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ABSTRACT:  The Berry College physics program has only 3 faculty, and of those I am the only one with significant experience in
computational physics.  As a result the responsibility of integrating computation into the physics curriculum has fallen largely on my
shoulders.  I have introduced students to computational physics in two main ways:  through computational assignments in my two-semester
classical mechanics sequence, and through student involvement in undergraduate research.  In both of the classical mechanics courses all
students are required to complete several major computational assignments using Mathematica.  In the second-semester course students are
additionally required to write formal papers (typeset using Mathematica or LaTeX, and incorporating figures, etc.) describing their work and
the results.  Student use of computation in undergraduate research has ranged from the use of Mathematica to study simple quantum systems
to the creation of sophisticated FORTRAN and Java programs to conduct original research in quantum chaos.
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Computational Physics at
Berry College

The College:

•Four-year liberal-arts college
with a few professional programs.
•Enrollment ~ 1750
•Located on a 26,400 acre campus
in Northwest Georgia.

The Physics Department:

•Three full-time faculty.
•Offer major and minor in
physics.
•5 graduates in the 2006-2007 AY
•Housed in a relatively new
(2001) science building.
•Computer facilities:

•Public student computer lab
with 24 Windows machines
•Physics student projects room
with 8 Windows or Mac
machines
•Computational research lab
with 5 PowerMac G4s).

Computation in the Physics
Major:

•Majors are not required to take
any computer science courses,
although many take a course in
Java/Python programming to get a
double-major in math.
•All majors will use Excel for
some basic computational work in
introductory labs.
•Almost all majors will use
Mathematica in their Differential
Equations course.
•All majors will take at least one
semester of Classical Mechanics,
which requires the use of
Mathematica for computational
projects.  These projects are
described in greater detail in the
next part of this poster.
•Most majors will use
Mathematica or other
computational software to some
extent in other physics or
mathematics courses.
•A few majors will engage in
computational physics research.
Some of this research is described
in greater detail later in this
poster.

Computation in Classical Mechanics

I teach a two-semester sequence in classical mechanics at Berry.  It is in these courses that our physics majors receive their greatest
exposure to computational physics.  In each class students are asked to complete several computational projects that relate to the material
covered in class.   I currently use Mathematica for these computational projects, but I am considering other alternatives.  In the first
semester the emphasis of the projects is on learning how to use Mathematica to solve computational problems (as well as learning physics!).
Students are expected to turn in their Mathematica code and the results of their computations, along with a brief description of their results.
In the second semester students are expected to turn in formal papers describing the problems they solved and their computational results
(this course is part of Berry’s Writing-Across-the-Curriculum Program).  These papers are expected to be properly typeset (using
Mathematica or LaTeX) with equations and figures included where appropriate.  The table below provides details about the various projects
that are assigned in each course.

Classical Mechanics II (PHY 402) Projects

Classical Mechanics I (PHY 302) Projects

Poincare sections
Iterating a 2D map
Eigenvalues and eigenvectors
(numerical diagonalization)
Parameter searching

Hamiltonian chaos
Fractal structures in phase space
Stability of fixed points
Lyapunov exponents
KAM tori
Homoclinic tangles

An area-preserving map on
the unit torus

Computation using ensembles
of trajectories (Monte Carlo)
Plotting lists of data

Preservation of phase-space
volume occupied by an ensemble
of trajectories

Liouville’s Theorem

Eigenvalues and eigenvectors
(numerical diagonalization)
Plotting lists of data

Coupled oscillators
Normal modes of vibration
Standing waves on a string

Chain of oscillators

Numerical linear algebra
Eigenvalues and eigenvectors
(numerical diagonalization)

Principal axes and principal
moments of inertia
Angular momentum and
rotational KE of a rigid body
Parallel-axis theorem

Rigid body rotation

Numerical solution of ODEs
Root finding
3D parametric plots

Non-inertial reference frames
Coriolis and Centrifugal forces

Projectile motion on Earth
(no air resistance)

Root finding
Numerical solutions of ODEs
Parametric plots

Circular orbits for a given force
law
Stability of circular orbits

Stability of circular orbits

Iteration of functions
Plotting data and functions
Bifurcation diagrams

Chaos in iterated maps
Lyapunov exponents
Bifurcations of periodic orbits

Tent map

Numerical solution of ODEs
Plots and parametric plots
Poincare sections

Nonlinear oscillators
Limit cycles/periodic orbits
Chaos

Duffing oscillator

Plotting multiple functions
Parametric plots

Homogeneous vs.
inhomogeneous solutions
Transient vs. steady-state motion

Driven harmonic oscillator

Numerical solution of ODEs
Parametric plots

Quadratic vs. linear damping
Absence of critical damping
Phase space trajectories

Damped harmonic
oscillator with quadratic
damping

Numerical solution of ODEs
Plotting functions
Root finding
Curve fitting (polynomial)
Optimization

Velocity-dependent forces
Quadratic air resistance

Projectile motion with air
resistance

Computational ToolsPhysics TopicsProject Title

Poincare Section of an area-preserving map
on the unit 2-torus

Comparison of trajectories of projectiles on
Earth with and without inertial forces.

Phase space trajectory for a quadratically
damped harmonic oscillator.

Poincare section for the driven Duffing oscillator.

Undergraduate Research in Computational Physics

Over the past six years I have supervised a variety of undergraduate research projects, all of
which have had a significant computational component.  The table below provides information
about some of these projects.

Constructing and diagonalizing random matrices
Computational statistics
Nonlinear curve fits

Mathematica
Java

Statistics of mixed
eigenvalue sequences

Generation of primes and random primes
Computational statistics on large datasets

Java
Mathematica

Statistical measures of the
randomness of prime
numbers

Root finding
Solving the time-dependent Schrödinger
equation
Computing autocorrelation function

MathematicaWavepacket revivals in the
asymmetric infinite square
well

Modular arithmetic
Computational statistics

Mathematica
FORTRAN

Eigenvalue statistics of
weakly driven systems

Solving large systems of ODEs
Numerical diagonalization
Computing statistical measures of localization
Numerical husimi distributions
Monte Carlo estimate of the area of a chaotic
region in the phase space

FORTRAN
Mathematica

Localization of a driven
particle in the infinite
square well

Poincare sections
Iterating a 2D map
Numerical diagonalization
Trajectory ensembles

MathematicaParabolic fixed points of an
area-preserving map on the
unit 2-torus

Complex-coordinate scaling
Solving large systems of ODEs
Numerical diagonalization
Numerical husimi distributions
Numerical Lypunov exponents

FORTRAN
MPI
Mac cluster
Windows cluster

Correlation of the
photodetachment rate of a
scarred resonance state with
the classical Lyapunov
exponent

Computational ToolsPlatformProject Description

Computational Physics Publications
Technical
T. Timberlake and J. V. Foreman, “Correlation of the Photodetachment Rate of a Scarred Resonance
State with the Classical Lyapunov Exponent,” Physical Review Letters 90, 103001 (2003).
T. Timberlake, F. Petruzielo, and L. E. Reichl, “Localization of Floquet states along a continuous line
of periodic orbits,” Physical Review E 72, 016208 (2005).
Pedagogical
Todd Timberlake, “A computational approach to teaching conservative chaos,” American Journal of
Physics 72, 1002-1007 (2004).
Todd Timberlake, “Random numbers and random matrices: Quantum chaos meets number theory,”
American Journal of Physics 74, 547-553 (2006).

Eigenvalue spacing distributions for the weakly
driven infinite square well.

Autocorrelation function for a special wavepacket
in the asymmetric infinite square well.

All Mathematica notebooks for these projects are available at:
http://fsweb.berry.edu/academic/mans/ttimberlake/comp_phys/


