
  

The Poincare-Birkhoff Theorem

How Do KAM Tori Break Up?

  

Winding Directions

• For an integrable system, the phase space consists 
of a series of n-tori ordered by winding number.

• Consider trajectories on three nearby tori (which 
we will call C+, C0, and C-):

! C+ has the largest winding number of the three

! C- has the smallest winding number of the three

• Switch to a frame that winds with C0, so 

C+ moves to the right in phase space and C- 

moves to the left.
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Action of the Poincare Map

• Let C0 be a trajectory with a rational winding 

number r/s.

• Apply the Poincare map (T) s times (or the map Ts 

once) to any point on C0 and you get back to the 

same point (you have gone around the torus r 

times).

• On the other hand Ts causes rightward motion on 

C+ and leftward motion on C-.

• So examining the dynamics of Ts is equvalent to 

switching to a frame that winds with C0.

  

Perturbed System

• When the perturbation is turned on the KAM tori 
become distorted.

• For small perturbation we will still have C+ 

winding right and C- winding left under the action 

of Ts.

• This means that as we move through the KAM 
tori there will be some point between C+ and C- 

where there is no winding.  In other words the 
angle doesn’t change, although the action may.

• We will call the set of all points for which this is 
true C!.  Note that this no longer represents an 

actual trajectory.
  

Action of Ts on C!

• If we apply the map Ts to the set of points 
on C! they can change action, but they 

cannot change angle.

• The result of applying the map gives a new 

set of points which we will call TsC!.

• Because the map is area-preserving (as 
discussed before) we know that the area 

under (inside) TsC! and C! in phase space 

must be the same.
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Poincare-Birkhoff Theorem

• The points where TsC! and C! intersect are fixed 

points of the map Ts (or periodic points of T with 
period s).

• Since the area under the two curves must be the same, 
the curves must intersect (except in the trivial case 

where Ts is the identity).  

• There must be an even number of (non-grazing) fixed 
points.  The pathological case of the two curves 
grazing each other does produce a fixed point but we 
will ignore this possibility for now as it will not affect 
our basic result.

• We will see that half of the (non-grazing) fixed points 
are stable (elliptic) and half are unstable (hyperbolic).

  

Stability of Fixed Points

• Points on TsC! that are below C! will move left.

• Points that are above C! will move right.

• This leads to an alternating series of stable and 

unstable fixed points.
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Unstable Fixed Point

• The map Ts carries a 
point from C! to a 

point on TsC!

• Continuing to apply 
the map causes the 
point to move away 
from the fixed point 
(H).

• This makes the fixed 
point unstable. 
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Stable Fixed Point

• The map Ts carries a 

point on C! to a point 

on TsC!.

• Continuing to apply 

the map causes the 

point to wind around 

the fixed point (E), 

making that fixed 

point stable.
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Motion Near a Stable Fixed Point

• Trajectories near a 

stable fixed point 

move in ellipses 

centered on the fixed 

point.

• This is why stable 

fixed points are called 

elliptic.
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Motion Near an Unstable Fixed 

Point

• Trajectories near an 
unstable fixed point 
move toward the fixed 
point along the stable 
manifold (H+) but 

away along the 
unstable manifold (H-)

• The resulting path is a 
branch of a hyperbola, 
which is why unstable 
fixed points are called 
hyperbolic.

H

H+

H+

H-

H-

  

Elliptic and Hyperbolic Points 

Around N=2 Resonance (K=0.2)

  

Hyperbolic Points and Chaos

• In nonintegrable systems there will be a thin 

region of chaos around the stable and unstable 

manifolds of a hyperbolic fixed point.

• There may also be secondary (or “daughter”) 

resonances at the edges of this thin chaotic region.  

These have their own hyperbolic fixed points.  

• As the perturbation is increased the chaotic 

regions around the manifolds of the hyperbolic 

points combine and grow larger.

  

Hyperbolic Point, K=0.6

  

Hyperbolic Point, K=0.7


