
  

Chaos in Conservative Systems

  

Integrable Systems

• We have seen that integrable systems can be 

described in terms of action-angle variables.

• In terms of these variables, the motion of an 

integrable system can be thought of as the winding 

of a trajectory on an N-torus, where N is the 

number of degrees of freedom of the system.

• The torus associated with a particular set of action 

variables is called an invariant torus (or KAM 

torus).

  

KAM Tori 

(Standard Map for K = 0.001)

  

Definition of Chaos

• Chaotic systems have sensitive dependence on 

initial conditions.  This means that changing the 

initial conditions slightly results in a dramatic 

change in the behavior.

• Note that integrable systems (winding on their 

invariant tori) cannot have sensitive dependence 

on initial conditions, so they are never chaotic.

• It is speculated that all non-integrable systems 

have some chaotic motion, but this is not certain.

  

How to Make a Chaotic Sytem 

From and Integrable One

• Suppose we have an integrable system with 
Hamiltonian H0.

• We can perturb the system by adding a nonlinear 
interaction term: H = H0 + !V

• Think of two uncoupled harmonic oscillators 
(integrable), and then add a non-linear coupling 
between the oscillators.

• The parameter ! determines the strength of the 
nonlinearity.  As it is increased the system may 
become chaotic.

  

Nonlinear Resonance
• As we have seen, integrable motion can be 

described by angle variables that rotate at certain 
frequencies.

• When these different motions become coupled by 
a nonlinear perturbation, their frequencies may be 
altered.

• If the frequencies of motion in different 
dimensions are equal, or at least rationally related 
(i.e. the winding number is rational), then a 
nonlinear resonance may result in which the two 
motions become phase locked (creating a periodic 
orbit in phase space).  Nearby trajectories wind 
around this periodic orbit.  The location of a 
nonlinear resonance can change as the 
perturbation is increased.



  

Nonlinear Resonances 

(Standard Map for K = 0.6)

  

Resonance Overlap

• The size of these nonlinear resonances depends 
upon the strength of the nonlinearity, !.

• As ! is increased these resonances grow larger, 
and eventually may overlap with one another.

• When resonances overlap, trajectories cannot 
“decide” which resonance to follow.  This results 
in the breaking of KAM tori and localized chaotic 
motion in the vicinity of the broken torus.

• The resulting phase space will show a mix of 
regular and chaotic motion.  This is called a mixed 
phase space.

  

Broken KAM Tori 

(Standard Map for K = 0.95

  

Global Chaos

• If the nonlinearity parameter is increased 

still further, more KAM tori will be broken.

• Eventually the last KAM torus will be 

broken and there will be chaotic motion 

throughout the phase space.  Although some 

regions of regular motion may remain, they 

will be islands in a chaotic sea.

  

Global Chaos 

(Standard Map for K = 1.5)

  

Hard Chaos

• As the nonlinearity parameter becomes very 

large the remaining islands of regular 

motion may be destroyed, leaving the entire 

phase space chaotic.

• In this case the phase space is no longer 

mixed, but is instead completely chaotic.  

This is called hard chaos.



  

Hard Chaos 

(Standard Map for K = 7)

  

Chaotic Trajectories 

(Diffusion Through Phase Space)

• A trajectory that starts out in a chaotic 

region of phase space will diffuse (wander) 

through the chaotic region.

• If the chaos is localized, then the trajectory 

will be confined to that region.

• If the chaos is global, then the trajectory is 

not confined.

  

Mixed Phase Space 

(Chaotic Trajectory for K = 0.95)

  

Global Chaos

(Chaotic Trajectory for K = 1.5)


