Dept. of Physics, Astronomy, \& Geology Berry College, Mount Berry, GA
2009 AAPT Summer Meeting
25-29 July, 2009
Ann Arbor, MI

Goals of the Activity

- Introduce students to the concepts of microstate, macrostate, and multiplicity
- Introduce students to the concepts of microstate, macrostate, and
- Illustratee, using a simple model, why a system tends to approach. equilibrium and why this results in an increase in entropy (in accordance with the Second Law of
Thermodynamics).
Thermodynamics).
Illustrate that fluctu
Illustrate that fluctuations away from equilibrium become less noticeable as the size of
the system is increased.
Co system is increased.
Connect these concep
f hot and cold gases.
Hlow and cold gases.
Allow students to explore historical objections (Maxwell's Demon, Loschmidt's
Model System: A Row of Coins
- Consider a row of coins with each coin fixed in place. Each coin can display either heads or tails.
- A microstate specifies the exact state of the system in full detail. For our model system this means stating for each coin whether it shows heads or tails.
-A macrostate gives a coarse-grained description of the state of the system. For our
model system this could mean stating the number of heads and tails.
model system this could mean stating the number of heads and tails.
The multiplicity of a macrostate is the number of microstates that co
and ther that therrespond to ther
- The probability of choosing a microstate in a particular macrostate, if the microstate is chosen at random, is just the multiplicity of the macrostate divided by the total number
of microstates. of microstates.
$\mathrm{S}=\mathrm{k}_{\mathrm{B}} \ln \Omega$ (we can use dimensionaless units with $\mathrm{k}_{\mathrm{B}}=1$ for simplicity).
- For a given number of coins students can write out all of the microstates and determine the multiplicity, probability, and entropy for each macrostate.
- For example, the 8 microstates for a row of 3 coins are: HHH, THH, HTH, HHT, HTT,
THT, TTH, and TTT. This gives the results shown in the table below, (R)

Macrostate	Multiplicity (Ω)	Entropy $(S=\ln \Omega)$	Probability $(P=\Omega / \Omega($ all $))$
$3 \mathrm{H}, 0 \mathrm{~T}$	1	0	$1 / 8$
$2 \mathrm{H}, \mathrm{T}$	3	1.0986	$3 / 8$
$1 \mathrm{H}, 2 \mathrm{~T}$	3	1.0986	$3 / 8$
$0 \mathrm{H}, 3 \mathrm{~T}$	1	0	$1 / 8$

Students can find multiplicities for rows of $1,2,3$, and 4 coins. These multiplicities can be arranged to form Pascal's Triangle and then students can use the rule for
constructing Pascal's Triangle to find multiplicities for larger numbers of coins: onstructing Pascal's Triangle to find multiplicities for larger numbers of coin

1					1			
2				2		1		
3					3		1	
4	1			6		4		1
5					10		5	

- By examining these multiplicities students can see that macrostates near equilibrium (equal numbers of heads and tails) always have the greatest multiplicities and thus the greatest probabilities and entropies
In addition, students can see that a
becomes increasingly concentrated in a ever-smaller fraction of macrostates near equilibrium.

Flipping Coins

- What happens if we start with a row of 20 coins and begin flipping coins over at randoine
pennies and a 20 -sided die: - Students roll the die and flip over the corresponding coin, keeping track of the number of heads and
 - The red squares in the graph below show the results from 80 rolls by a single group
of students. The blue triangles show the results obtained by averaging data from six of students. The
different groups.

- It is clear that the system gradually approaches equilibrium, but continues to fluctuate about the equilibrium state. The relative size of the fluctuations decreases as the number of coins increases.
- To explore the behavior with larger
numbers of coins students use a compute simulation. The simulation provides a graphic representation of the system of
coins coins (red $=$ heads, blue $=$ tails) as well as graphs of the number of heads/tails and th entropy
from the simulation with 200 coins. - Using the simulation students can that in all cases the system tends to approach equilibrium and that, as a result, increases.
- As the number of coins is increased the occasional fluctuations away from equilibrium (and the correspondin
decreases in entropy) decrease in size. - For very large numbers of coins the fluctuations are no longer noticeable and the
entropy appears to increase steadily until the entropy appears to increase steadily until the system reaches the equilibrium state, at
which point the entropy levels off and remains constant.
- So in this model system the Second Law does not hold absolutely, but the probability that it holds appro
increases in size.

From Coins to Ideal Gases

- Students can then explore simulations of an ideal gas in a box to see how the behavior of the coin model relates to the behavior of a more realistic model system.
- The first simulation starts with an ideal gas confined to the left side of a box. The gas expands, eventually reaching equilibrium (and maximum entropy) when it fills the box. -The simulation shows a graphical representation of the gas, as well as a graph showing the
number of molecules on each side of the box (as shown below, for 200 molecules) number of molecules on each side of the box (as shown below, for 200 molecules). Students can readily see
that of the coin model. of the coin model.

- Another simulation (sample snapshot shown below) allows students to observe the behavior of a system that starts with a hot gas on one side of the box and a cold gas on the other. The gases expand and overlap (without interacting), leading both sides of the box to reach an intermediate temperature (as measured by the average kinetic energy of the
molecules on each side of the box). This illustrates how increasing entropy is connect with heating.

The simulations can also be used to illustrate some historical objections to Boltzmann's ideas such as Maxwell's Demon (which sorts fast and slow molecules and thus reverses heating) and Loschmidt's umkehreinwand (in which a time-reversed gas shows a decreasing entropy). The simulations illustrate that violations of the Second Law are possible, but Boitzmann's statistical approach to enrpy assures us hat such violations are
exceedingly unlikely in a macroscopic system. Sample outputs are shown below:

Maxwell's
$\begin{array}{c}\text { Demon turned } \\ \text { was } \\ \text { off at this } \\ \text { time }\end{array}$

- By completing this activity students can gain insight into the statistical interpretation of entropy and understand why Bolizmann claimed that the Second Law "means nothing else than that ... the system of bodies goes from a more improbable to a more probable
state." (W. F. Magie, A Source Book of Physics, p. 263)

Resources

- Handouts for the activity and all computer simulations can be downloaded for free from http: / / facultyweb. berry .edu/t timberlake/entropy
.20 -sided dice can be purchased at many hobby stores.
- For more detailed information please see my paper describing this activity (available for download at http: //facultyweb. berry.edu/ttimberlake/entropy) and the references therein

