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A computational approach to teaching conservative chaos that is suitable for undergraduates in an
upper-level classical mechanics course is discussed. Some ways that computation can be used to
facilitate the teaching of several important topics in conservative chaos are described. ©2004

American Association of Physics Teachers.
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I. INTRODUCTION

There are many reasons why one might wish to teach
dergraduates about the physics of chaos in conserva
~Hamiltonian! systems. Chaos theory is one of the three
ideas to emerge from 20th century physics~along with quan-
tum mechanics and relativity!. Students, who may otherwis
find classical mechanics a seemingly dead subject, find ch
theory exciting because of its ‘‘newness’’ and its visual a
peal. The study of chaos in conservative systems is part
larly important because it sheds light on the problem
quantum-classical correspondence.1 There also are many el
egant theorems~such as Liouville’s theorem and th
Poincare´–Birkhoff theorem! that are only applicable to con
servative systems.

Despite these motivations, chaos theory is rarely taugh
undergraduates. Unlike the study of quantum field theory
general relativity, the study of conservative chaos requ
nothing more than calculus, differential equations, and so
linear algebra. The problem with teaching chaos is that
can only study the detailed dynamics of a chaotic sys
computationally. In the past, this requirement meant that
physics of conservative chaos could only be taught to
dents who had programming skills. Now, however, there
a number of general-purpose computing programs, suc
Mathematica and Maple, that can enable students with l
or no computing background to quickly pick up the comp
tational skills they need to study conservative chaos.2

Once the need for computation ceases to be a roadbloc
actually becomes an advantage. After seeing how their
structor carries out various computations to analyze a mo
system, students can do their own computational invest
tions of other systems. In a very short time they can
studying the dynamics of models that no one has ever s
ied before.3 In addition, students learn computational ski
that can help them in their other courses or research. C
putation has become an important tool in nearly all subfie
of physics,4 and knowing how to use general-purpose ma
ematical software is a useful skill for a physicist.5

In this article I present several ways that computation
be used to facilitate the teaching of chaos in conserva
systems. These examples are designed to be used in the
ond semester of a two-semester upper-level sequence in
sical mechanics. Among the topics covered in the first
mester of the sequence are Hamiltonian mechanics and c
in iterated functions like the logistic map.6 The material de-
scribed in this article is presented at the end of the sec
semester course, after the students have had the opport
to become more familiar with Hamiltonian mechanics. T
1002 Am. J. Phys.72 ~8!, August 2004 http://aapt.org/aj
n-
ve
g

os
-
u-
f

to
r
s
e
e
m
e
-
e
as
le
-

, it
n-
el
a-
e
d-

-
s
-

n
e
ec-

as-
-
os

d
ity

sequence of topics that I have used follows that of Chap
11 in Ref. 7. Other good sources of information on cons
vative chaos are available.1,6–8

II. TEACHING CONSERVATIVE CHAOS THROUGH
COMPUTATION

The computational approach to teaching conserva
chaos that I have employed consists of four basic steps
the first step the instructor prepares several figures that il
trate important concepts in conservative chaos. The inst
tor then presents a series of lectures in which these conc
and their mathematical underpinnings are discussed and
figures are presented to illustrate key points. Next, the
dents are given access to the code used to create the fig
and asked to solve a few computational problems. Fina
the students are asked to carry out a computational inve
gation of a nonlinear Hamiltonian system that they have
seen before.

In this section I will present several examples of figur
that can be used as described. Although the significanc
each figure will be discussed, readers unfamiliar with cons
vative chaos may need to consult Refs. 1, 6, 7, or 8 fo
more detailed discussion of the topics and terminology. T
Mathematica code used to create these figures, along w
description of the calculations, can be found at Ref. 9.

The figures are part of an investigation of the stand
map.10 Two-dimensional area-preserving maps provide
convenient way to introduce students to chaos in conse
tive systems. These maps can display most of the main
tures of conservative chaos. The dynamics of these maps
be easily visualized with two-dimensional plots. In additio
some of the calculations relevant to conservative chaos, s
as finding the tangent map for a fixed point can be carr
out analytically.

The standard map serves as an approximation for sev
physical systems, most notably the kicked rotor. The st
dard map can be written as6

r n115r n2
K

2p
sin~2pun!, mod 1, ~1a!

un115un1r n11 , mod 1. ~1b!

The variablesr and u are dimensionless phase space va
ables. Both coordinates are periodic, so for exampleu51 is
equivalent tou50. It is convenient to think ofr as an action
variable andu as the corresponding angle. In some situatio
it may be useful to think ofr andu as dimensionless pola
coordinates.K is a dimensionless parameter that controls
1002p © 2004 American Association of Physics Teachers
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nonlinearity of the system. ForK50 the system is inte-
grable.

A. Surfaces of section

The dynamics of a Hamiltonian system takes place i
2N-dimensional phase space whereN is the number of de-
grees of freedom. The dynamics is therefore difficult to
sualize even for two degrees of freedom. The best way
obtain a visual picture of the dynamics is to construct a s
face of section. To construct such a surface, we calculate
trajectories starting from several initial conditions in vario
parts of the phase space. Instead of trying to view th
trajectories in the full 2N-dimensional phase space, we on
examine the points at which these trajectories interse
two-dimensional plane. As a single trajectory moves throu
the phase space, it repeatedly intersects this plane, produ
a collection of points that provide a visual picture of t
trajectory’s behavior. Because trajectories cannot inter
each other in Hamiltonian systems, each point on a sur
of section is associated with only one trajectory in the f
phase space. Therefore a surface of section can be thoug
as a two-dimensional map that maps a point at which a
jectory intersects the plane to the next point at which
trajectory intersects the plane.

A two-dimensional, area-preserving map like the stand
map can be thought of as generating the surface of sectio
some physical system. The surface of section is produce
choosing several initial points in phase space and then p
ting the sequence of points that result from repeatedly ap
ing the map to each initial point. The set of points that ar
from a single initial point can be referred to as a trajectory
the map. If the initial points are distributed throughout pha
space, the surface of section will provide an overview of
dynamics of the system. The initial points may be chosen
that they lie on a regular grid in the phase space, or they m
be chosen at random. If there are noticeable gaps in the
face of section, then additional initial points can be chose
fill in the gaps.

For K50 the standard map is integrable. The surface
section forK50 consists of trajectories crossing horizonta
from u50 to u51 at constant values ofr . Becauseu is a
periodic coordinate, each of these trajectories really mo
along a circle~or 1-torus!. For higher dimensional integrabl
systems, the trajectories also are confined to~higher dimen-
sional! tori. These tori, on which the integrable trajectori
are constrained to move, are known asinvariant tori.

Figure 1 shows a surface of section for the standard m
with K50.8, for which the map is no longer integrable. T
surface of section reveals many important features of
map’s dynamics. For example, the group of nested ellipt
curves surrounding the origin is a structure known as a n
linear resonance. For two-dimensional~or higher! systems
nonlinear resonances occur when the frequency of motio
one dimension is rationally related to the frequency of m
tion in a different dimension. In the case of a on
dimensional map, nonlinear resonances occur when the
quency of motion is rationally related to the map frequen
For the standard map the point at the origin is mapped b
to the origin after each application of the map and is the
fore called a fixed point. Nearby points wind around th
periodic trajectory as the map is repeatedly applied, form
the elliptical curves that comprise the nonlinear resona
~or resonance island!. There also are a number of continuo
1003 Am. J. Phys., Vol. 72, No. 8, August 2004
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curves that run horizontally fromu50 to u51. These struc-
tures are the remaining invariant tori~or KAM tori after Kol-
mogorov, Arnol’d, and Moser11! that have become distorte
by the increase inK, but have not been destroyed. In add
tion to resonance islands and KAM tori, there also is a d
organized scatter of points in the vicinity of~0.5,0!. The
motion in this region of the phase space is chaotic.

By investigating how the surface of section changes aK
is varied, we can see that the resonance islands grow aK
increases. Eventually these resonances overlap and the K
tori between them are broken. The overlap of nonlinear re
nances leads to chaotic motion because the points in
region of overlap don’t know which periodic trajectory t
wind around. This chaotic motion always begins in the
cinity of the separatrix, which is the boundary between
nonlinear resonance and the KAM tori that lie just outsid
For example, the region of chaotic motion~sometimes called
the stochastic layer! in Fig. 1 lies along the boundary be
tween the large resonance island and the KAM tori. Traj
tories that start out anywhere in the chaotic region can w
der, or diffuse, throughout that region. For sufficiently lar
K, all KAM tori will be destroyed and the entire phase spa
will be chaotic.

We also can use surfaces of section to explore the fra
nature of a mixed phase space~one that contains both chaoti
and nonchaotic regions! by zooming in on the edge of one o
the resonance islands to see that each resonance is typ
surrounded by smaller daughter resonances, which ar
turn surrounded by even smaller resonances, and so on.
fractal structure illustrates that nonlinear resonances occu
all scales in a chaotic Hamiltonian system.

Problem 1. Create surface of section plots for the standa
map withK50, K51, andK57. Describe the dynamics o
the map for each value ofK.

Problem 2. Determine the approximate value ofK for
which all resonances other than the one centered at the o
have been destroyed. Determine the approximate value oK
for which the resonance centered at the origin is destro
~at this value ofK the phase space will be almost entire
chaotic!.

B. Individual trajectories

Plots of individual trajectories also can help us visual
certain aspects of conservative chaos. By choosing

Fig. 1. Surface of section for the standard map withK50.8. Note that the
coordinatesr and u are periodic. A large resonance~elliptical island! is
visible at the origin. Several higher-order resonances or island chains
are visible. Continuous curves running across the phase space are KAM
Chaotic motion is visible in the region of the separatrix around the la
resonance island.
1003Todd Timberlake
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proper initial conditions for a given value ofK, one can
easily create plots of periodic orbits, KAM tori, trajectorie
trapped in resonance regions, or chaotic trajectories. Sim
examine the surface of section, choose an initial point t
lies in the region to be examined, and plot the points t
result from repeated iterations of the map. Plots of cha
trajectories can be particularly useful for identifying barrie
to chaotic diffusion in phase space. If, for a given value
K, KAM tori still exist in phase space, these structures w
block the diffusion of a chaotic trajectory in ther direction.
For sufficiently high values ofK, all KAM tori will be bro-
ken and chaotic trajectories can diffuse freely inr . The last
KAM torus to be destroyed will be the one whose windi
number ~essentially the amount thatu changes with each
iteration of the map! is the reciprocal of the golden ratio
Nonlinear resonances form where trajectories have ratio
winding numbers. The golden ratio and its reciprocal
among the irrational numbers that are most difficult to a
proximate with rational numbers~because their continue
fraction expansions converge slowly!, and thus a KAM torus
with this winding number will be far from any nonlinea
resonance and the last to be destroyed by reson
overlap.1,8

Figure 2 shows the first 10 000 iterations of a chaotic t
jectory for K51.13 starting at the point~0.5,0.0001!. This
trajectory appears to be bounded inr , implying that KAM
tori still exist for this value ofK. However, this picture is
somewhat misleading because even broken KAM tori~some-
times called cantori because of their Cantor set-like str
ture! can provide a partial barrier to chaotic diffusion. Th
presence of cantori prevents this trajectory from diffus
through all values ofr during the first 10 000 iterations of th
map. If the first 100 000 iterations were shown, we would
that the trajectory diffuses through the apparent bounda
indicating that the apparent boundaries are really only pa
barriers to diffusion. There are no unbroken KAM tori fo
values ofK.K* 50.971 6354.1

Problem 3. Choose the initial point~0.6,0.1! and estimate
the value ofK* by finding the smallest value ofK for which
the diffusion of the trajectory inr is no longer blocked dur-
ing the first 10 000 iterations of the map.

C. Visualizing Liouville flow

Plotting the evolution of a group of points in phase spa
can help us visualize Liouville’s theorem. Liouville’s theo

Fig. 2. A portion of a chaotic trajectory for the standard map withK
51.13. The initial point is~0.5, 0.0001!. The first 10 000 iterations of the
map are shown. Continued iteration would show further diffusion inr ,
because at this value ofK all KAM tori are broken.
1004 Am. J. Phys., Vol. 72, No. 8, August 2004
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rem states that the area of any region of phase space is
served under the application of a Hamiltonian map~or under
time evolution in a continuous Hamiltonian system!. Math-
ematically this area preservation occurs because the Jaco
of a Hamiltonian map, defined by

J5S ]un11

]un

]un11

]r n

]r n11

]un

]r n11

]r n

D , ~2!

has determinant equal to one. The Jacobian for a continu
system can be defined in a similar way.7

A proper understanding of Liouville’s theorem involve
visualizing classical dynamics as a flow of points in pha
space. Points flow from one location in phase space to
other under application of the map~or under time evolution!.
This visual picture can be aided by diagrams that illustr
the flow of a large number of initially nearby points. Figu
3 illustrates this phase space flow and the preservation
area required by Liouville’s theorem. Figure 3~a! shows the
initial conditions: five thousand points randomly selected
side a rectangular region of the phase space. Figures 3~b!–
3~d! show the result of applying the map~for K51.5) repeat-
edly on this set of points. These diagrams illustrate t
although the region occupied by the points is stretched
bent, its area remains constant. Thus, the flow of points
Hamiltonian system is like the flow of an incompressib
fluid. An animation composed of several of these plots sho
how the group of points evolves under iterations of the m
and provides an excellent way to visualize the phase sp
flow.12

Problem 4. Determine the Jacobian for the standard m
and show that its determinant is equal to one for all values
K.

Problem 5. Examine the flow of points that lie inside
nonlinear resonance. Contrast this behavior with the flow
points in a chaotic region of the phase space.

D. Behavior of trajectories near a fixed point

Fixed points~which are mapped back to themselves und
one iteration of the map! and periodic points~which are
mapped back to themselves after several iterations of

Fig. 3. An illustration of phase space flow and Liouville’s theorem. Plot~a!
shows 5000 initial points distributed randomly in a rectangular region
phase space. The remaining plots show the distribution of trajectories
~b! one,~c! two, and~d! three iterations of the map withK51.5.
1004Todd Timberlake
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map! play an important role in determining the overall d
namics of a Hamiltonian map. According to the Poincar´–
Birkhoff theorem,13 whenK is increased from zero to som
small but finite value, trajectories with rational winding num
bers will form into a sequence of alternating stable~elliptic!
and unstable~hyperbolic! periodic points. Periodic points ar
stable if nearby trajectories remain close and unstabl
nearby trajectories move away. The stable periodic po
will become the centers of nonlinear resonance islands.
unstable periodic points provide the seeds for chaotic mo
~see the discussion of homoclinic tangles in the followin!.
Thus, the stability of a given periodic point is crucial fo
determining the character of the dynamics in the region
phase space that surrounds the point.

Here we will focus on analyzing the stability of fixe
points, but the analysis can be extended to deal with perio
points. The best way to analyze the stability of a fixed po
is to construct the stability matrixP for the point. The sta-
bility matrix is a linear map that describes the local dynam
in the vicinity of the fixed point. If the eigenvalues of th
stability matrix are complex with unit modulus, the fixe
point is stable and nearby trajectories will remain nearby.
if one eigenvalue has absolute value greater than one
fixed point is unstable and nearby trajectories will mo
away from the fixed point along a certain axis. For a tw
dimensional map the stability matrix is the Jacobian, Eq.~2!,
evaluated at the fixed point. The eigenvalues of a 232 ma-
trix P are given bya5@Tr P6A(Tr P)224(DetP)#/2. Be-
cause the map is area preserving, the determinant of the
bility matrix is unity and the eigenvalues must come in pa
of the forma and 1/a. If uTr Pu,2, then the eigenvalues o
the stability matrix are complex conjugates with unit mod
lus and the fixed point is stable. IfuTr Pu.2, then the eigen-
values of the stability matrix are real numbers of the forma
and 1/a with uau.1 and the fixed point is unstable.

The eigenvectors of the stability matrix for an unstab
fixed point play an important role in determining the beha
ior of trajectories in the vicinity of the point. The eigenvect
associated with the eigenvaluea indicates the direction
along which nearby points move away from the fixed po
~the unstable direction!. The eigenvector associated with 1a
gives the direction along which nearby points move tow
the fixed point~the stable direction!. This effect can be dem
onstrated in a way that is similar to the illustration of Lio
ville’s theorem. Begin with a large number of points ra
domly distributed in the vicinity of the fixed point. As th
map is repeatedly applied to these points, the distribu
will become compressed along the stable direction
stretched out along the unstable direction, making the
stable direction easy to see. If we apply the inverse map

un5un112r n11 , mod 1, ~3a!

r n5r n111
K

2p
sin~2pun!, mod 1, ~3b!

rather than the forward map, then the distribution will b
come stretched out along the stable direction, making
stable direction easy to see.

Figure 4 illustrates this effect. The plots were genera
using 5000 initial points distributed randomly in a rectang
lar region around the unstable fixed point~0.5,0! for K
51.5. The points that lie along the line of positive slo
show the result of applying the forward map four times. T
1005 Am. J. Phys., Vol. 72, No. 8, August 2004
if
ts
he
n

f

ic
t

s

t
he

-

ta-
s

-

-

t

d

n
d

n-

-
e

d
-

e

points that lie along the line of negative slope are the re
of applying the inverse map four times. The flow of poin
can be clearly demonstrated by animating these plots.12

Another way to visualize the behavior of trajectories in t
vicinity of an unstable fixed point is to create a flow diagra
A flow diagram shows a vector field that indicates the dire
tion each point will move when the map is applied. Figure
shows a flow diagram around the fixed point~0.5,0! for K
51.5. Note that the arrows point out along the unstable
rection and in along the stable direction of Fig. 4.

Problem 6. Evaluate the stability matrix~Jacobian! for the
fixed point of the standard map at~0.5,0!. Determine the
values ofK for which this fixed point is stable or unstable
Find the eigenvalues and eigenvectors of the stability ma
for K51.5. Show that the eigenvector with eigenval

Fig. 4. Stable and unstable directions for the fixed point at~0.5,0! for K
51.5. The forward and inverse maps were applied to 5000 points, initi
distributed randomly in a rectangular region surrounding the fixed po
After four iterations of the forward map, the points lie along the unsta
direction ~the line with positive slope!. After four iterations of the inverse
map, the points lie along the stable direction~the line with negative slope!.
The modulo 1 restriction in Eq.~1! has been removed to make the resu
easier to see, becauser is a periodic coordinate and a value ofr slightly less
than zero is equivalent to a value ofr slightly less than one.

Fig. 5. Flow diagram in the vicinity of the fixed point at~0.5,0! for K
51.5. The arrows indicate that nearby points flow away from the fixed po
along the unstable direction from Fig. 4 and flow toward the fixed po
along the stable direction from Fig. 4. The modulo 1 restriction in Eq.~1!
has been removed as in Fig. 4.
1005Todd Timberlake
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greater than one points along the unstable direction of Fi
and that the eigenvector with eigenvalue less than one po
along the stable direction.

Problem 7. Evaluate the stability matrix for the fixed poin
of the standard map at~0,0!. Determine the values ofK for
which this fixed point is stable or unstable. Investigate w
happens in the surface of section when this fixed point
comes unstable.

E. Homoclinic tangles

The idea of identifying stable and unstable directions
sociated with an unstable fixed point can be extended. Im
ine constructing the set of all points in the phase space t
if acted on repeatedly with the inverse map, would even
ally move in toward the unstable fixed point along the dire
tion of the unstable eigenvector of the stability matrix. Th
structure is called the unstable manifold of the fixed po
and the manifold as a whole is invariant under application
the map. Close to the fixed point itself this structure is
straight line in the direction of the unstable eigenvector. F
ther from the fixed point this line will begin to curve an
turn, but it will never cross itself. Similarly, we can constru
the stable manifold of the fixed point~the set of points tha
are eventually mapped in along the stable eigenvector by
forward map!. The stable manifold will be a straight lin
along the stable eigenvector in the vicinity of the fixed poi
but will curve when it is farther away. In an integrable sy
tem, the unstable manifold of a particular fixed point w
connect smoothly with the stable manifold of the same, o
a different, unstable fixed point. These smoothly connec
manifolds form a separatrix. In a chaotic system these m
folds do not connect smoothly. In fact, they don’t connect
all. Instead they cross each other an infinite number of tim
~while never crossing themselves!. If the stable and unstabl
manifolds emanate from the same unstable fixed point, t
this structure is called a homoclinic tangle. If they are fro
different fixed points, it is called a heteroclinic tangle. T
intersection points are called homoclinic~or heteroclinic!
points. Each homoclinic~or heteroclinic! point is mapped to
another such point.

We can easily imagine that motion in the vicinity of
tangle will be quite complex. The stable and unstable ma
folds may occupy only a small region of the phase space.
in this small region these manifolds must cross each othe
infinite number of times without crossing themselves. To
complish this feat, the manifolds must make tighter a
tighter turns as they twist back and forth in the phase sp
This complex web of intersections between the two ma
folds gives rise to chaotic motion in the region occupied
the tangle.

We can gain some appreciation for the complexity o
tangle by plotting a portion of the stable and unstable ma
folds associated with an unstable fixed point. Figure 6 sho
a portion of the stable and unstable manifolds associa
with the fixed point of the standard map at~0.5,0! with K
51.5. A plot of the unstable manifold can be constructed
taking several initial points that are displaced from the fix
point along the direction of the unstable eigenvector of
stability matrix but at random~though small! distances. Ap-
plying the forward map to these points will cause them
spread out along the unstable manifold. Successive iterat
of the map will generate a more complete picture of
unstable manifold. A plot of the stable manifold can be co
1006 Am. J. Phys., Vol. 72, No. 8, August 2004
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structed in an analogous way, with points distributed alo
the direction of the stable eigenvector and using the inve
map. The combination of these two plots gives a partial p
ture of the homoclinic tangle. The complete tangle is an
finitely complicated structure and can never be viewed in
entirety. However, the more iterations of the map one use
construct the tangle, the more of its complexity can be se
An animation showing successive iterations of this proc
can effectively illustrate the increasing complexity of the h
moclinic tangle. Imagining the extrapolation of this proce
to an infinite number of map iterations allows us to visual
the complexity of the homoclinic tangle that leads to chao
motion.

Problem 8. Create a plot of the homoclinic tangle for th
fixed point ~0.5,0! with K50.8. How is this homoclinic
tangle different from the one shown in Fig. 6? Describe w
you would expect to see if you created a plot of the h
moclinic tangle for the same fixed point withK53. Test your
hypothesis.

F. Exponential divergence of trajectories and Lyapunov
exponents

Because unstable fixed points play such an important
in determining the dynamics of the system, it would be u
ful to have a way of quantifying their instability. The eigen
value,a, of the stability matrix with absolute value great
than one can play this role, but another useful measure of
instability of a fixed point is the Lyapunov exponent. Th
Lyapunov exponent is defined asl5 lnuau. Trajectories that
start close to a typical unstable fixed point will move aw
from the fixed point exponentially. The distance between
two points aftern iterations of the map isdn'd0eln. Stable
fixed points~with eigenvalues of unit modulus! havel50.
The exponential divergence of nearby trajectories is ill
trated in Fig. 7. The plot shows the natural log of the d
tance, lndn , between two trajectories as a function ofn with
K51.5. One trajectory is the fixed point at~0.5,0! while the
other trajectory begins at (0.511028,0) and moves away
from the fixed point. The linear increase of lndn for n,17
indicates that the distance between the two trajectorie
increasing exponentially. Forn.17 the second trajectory be
gins to move closer to the fixed point, indicating that t
exponential divergence does not continue indefinitely. T
exponential divergence may cease because the trajectory
run up against barriers in phase space, or it may simply
that the trajectory has moved far enough from the unsta
fixed point so as to be no longer repelled.

Fig. 6. A portion of the homoclinic tangle surrounding the unstable fix
point of the standard map at~0.5,0! with K51.5. The complete homoclinic
tangle is infinitely more complicated than the curve shown here.
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nt
al

in
he

io
e
ti
g

n
ic
te

rg
d
he
wo
re
d
n

te

ear
ne-
,
be

is

s-

hys-

nd
ts’’

icu-

ote-
hich
c/
ture
irect
ce
page

r

site

ec
o

o

Problem 9. Find the Lyapunov exponent for the fixed poi
at ~0.5,0! with K51.5. Show that it is approximately equ
to the slope of the line on which the points in Fig. 7 fall~for
n,17). Then find the Lyapunov exponent for this fixed po
with K50.8. How is the Lyapunov exponent related to t
size of the homoclinic tangle~from Problem 8!?

III. CONCLUDING REMARKS

I have presented a number of ways in which computat
can facilitate the teaching of conservative chaos to und
graduates. By combining numerical exploration with analy
cal calculations, students can gain a deeper understandin
chaotic dynamics in conservative systems. Students ca
assigned problems, similar to those presented in this art
as the material is covered in class. After they have comple
these assignments, students will be able to take on la
independent projects. For instance, they may be aske
investigate the dynamics of a new map using the tools t
have learned in studying the standard map. Other t
dimensional area-preserving maps can be found in the
ommended texts.1,6,8 I have taught this material in the secon
semester of a two semester upper-level classical mecha
sequence, but one could add to this material to crea

Fig. 7. An illustration of the exponential divergence of neighboring traj
tories. The plot shows the natural log of the distance between the fixed p
at ~0.5,0! and an initially nearby (du51028 and dr 50) trajectory as a
function of the number of map iterations forK51.5. Note that the curve
increases linearly untiln517, indicating that the distance between the tw
trajectories is increasing exponentially. The modulo 1 restriction of Eq.~1!
has been removed to allow for the accurate calculation of distances.
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course for undergraduate that focuses entirely on nonlin
dynamics. Such a course could include material on o
dimensional maps~iterated functions!, continuous systems
and dissipative chaos. Information on these topics can
found in Refs. 1, 6–8.
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