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A computational approach to teaching conservative chaos that is suitable for undergraduates in an
upper-level classical mechanics course is discussed. Some ways that computation can be used to
facilitate the teaching of several important topics in conservative chaos are descrilmgs ©
American Association of Physics Teachers.
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[. INTRODUCTION sequence of topics that | have used follows that of Chapter
11 in Ref. 7. Other good sources of information on conser-

There are many reasons why one might wish to teach uriative chaos are availabté.”®
dergraduates about the physics of chaos in conservative
(Hamiltonian systems. Chaos theory is one of the three big
ideas to emerge from 20th century physiakbng with quan- Il. TEACHING CONSERVATIVE CHAOS THROUGH

tum mechanics and relativityStudents, who may otherwise COMPUTATION
find classical mechanics a seemingly dead subject, find chaos The computational approach to teaching conservative

thee;?r){rﬁécgtlﬂg b(i‘cgﬁsgsoialtcsonr;eevrvvnaetilse sngtéﬁsvzzuaér?ig'chaos that | have employed consists of four basic steps. In
peal.. y . . y P Yhe first step the instructor prepares several figures that illus-
larly important because it sheds light on the problem of,

) 4 trate important concepts in conservative chaos. The instruc-
quantum-classical correspondencehere also are many el- o yhen presents a series of lectures in which these concepts
egant 'the(_)rems(such as_Liouville’s theor_em and the 4ng their mathematical underpinnings are discussed and the
Poincare-Birkhoff theorem that are only applicable to con- g res are presented to illustrate key points. Next, the stu-
servative systems. _ dents are given access to the code used to create the figures

Despite these motivations, chaos theory is rarely taught tgnq asked to solve a few computational problems. Finally,

undergraduates. Unlike the study of quantum field theory ofhe students are asked to carry out a computational investi-
general relativity, the study of conservative chaos requiregation of a nonlinear Hamiltonian system that they have not
nothing more than calculus, differential equations, and somegeen before.
linear algebra. The problem with teaching chaos is that we |n this section | will present several examples of figures
can only study the detailed dynamics of a chaotic systenthat can be used as described. Although the significance of
computationally. In the past, this requirement meant that theach figure will be discussed, readers unfamiliar with conser-
physics of conservative chaos could only be taught to stuvative chaos may need to consult Refs. 1, 6, 7, or 8 for a
dents who had programming skills. Now, however, there arenore detailed discussion of the topics and terminology. The
a number of general-purpose computing programs, such adathematica code used to create these figures, along with a
Mathematica and Maple, that can enable students with littlelescription of the calculations, can be found at Ref. 9.
or no computing background to quickly pick up the compu- The figures are part of an investigation of the standard
tational skills they need to study conservative chaos. map!® Two-dimensional area-preserving maps provide a
Once the need for computation ceases to be a roadblock, ¢onvenient way to introduce students to chaos in conserva-
actually becomes an advantage. After seeing how their intive systems. These maps can display most of the main fea-
structor carries out various computations to analyze a modétres of conservative chaos. The dynamics of these maps can
system, students can do their own computational investigebe easily visualized with two-dimensional plots. In addition,
tions of other systems. In a very short time they can besome of the calculations relevant to conservative chaos, such
studying the dynamics of models that no one has ever stud@s finding the tangent map for a fixed point can be carried
ied before? In addition, students learn computational skills out analytically.
that can help them in their other courses or research. Com- The standard map serves as an approximation for several
putation has become an important tool in nearly all subfield®hysical systems, most notably the kicked rotor. The stan-
of physics? and knowing how to use general-purpose math-dard map can be written @s
ematical software is a useful skill for a physicist.

K
In this article | present several ways that computation can  r,,(=r,— 2—sir‘(2m9n), mod 1, (1a
be used to facilitate the teaching of chaos in conservative m
systems. These examples are designed to be used in the sec- g, ,=¢,+r,,,, mod 1. (1b)

ond semester of a two-semester upper-level sequence in clas- ) ) ) )
sical mechanics. Among the topics covered in the first seJhe variables” and ¢ are dimensionless phase space vari-
mester of the sequence are Hamiltonian mechanics and chagBles. Both coordinates are periodic, so for exangptel is

in iterated functions like the logistic m&pThe material de- equivalent tog=0. It is convenient to think of as an action
scribed in this article is presented at the end of the secondariable and as the corresponding angle. In some situations
semester course, after the students have had the opportunitynay be useful to think of and ¢ as dimensionless polar
to become more familiar with Hamiltonian mechanics. ThecoordinatesK is a dimensionless parameter that controls the
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nonlinearity of the system. FOK=0 the system is inte-
grable.

0.

A. Surfaces of section 0.

The dynamics of a Hamiltonian system takes place in a * 0.
2N-dimensional phase space wheeis the number of de-

grees of freedom. The dynamics is therefore difficult to vi- 0.

sualize even for two degrees of freedom. The best way to
obtain a visual picture of the dynamics is to construct a sur-
face of section. To construct such a surface, we calculate the
trajectories starting from several initial conditions in various
parts of the phase space. Instead of trying to view thesegig. 1. Surface of section for the standard map wth 0.8. Note that the
trajectories in the full X-dimensional phase space, we only c_oc_)rdinatesr an_d _0 are period_ic. A large resonan((elliptic_al island i_s
examine the points at which these trajectories intersect gsml_e_at the origin. Several hlgher_-order resonances or island chains alst_)
two-dimensional plane. As a single trajectory moves throug are V|s_|ble. C'ontl'nuo_u_s curves running across the phase_: space are KAM tori.
. . . .Chaotic motion is visible in the region of the separatrix around the large
the phase space, it repeatedly intersects this plane, producifgonance island.
a collection of points that provide a visual picture of the
trajectory’s behavior. Because trajectories cannot intersect
each other in Hamiltonian systems, each point on a surfaceurves that run horizontally frori=0 to #=1. These struc-
of section is associated with only one trajectory in the fulltures are the remaining invariant téar KAM tori after Kol-
phase space. Therefore a surface of section can be thoughtmbgorov, Arnol'd, and Mosé?) that have become distorted
as a two-dimensional map that maps a point at which a traby the increase i, but have not been destroyed. In addi-
jectory intersects the plane to the next point at which theion to resonance islands and KAM tori, there also is a dis-
trajectory intersects the plane. organized scatter of points in the vicinity ¢0.5,0. The
A two-dimensional, area-preserving map like the standargnotion in this region of the phase space is chaotic.
map can be thought of as generating the surface of section of By investigating how the surface of section change& as
some physical system. The surface of section is produced ¥ varied, we can see that the resonance islands groi as
choosing several initial points in phase space and then plofncreases. Eventually these resonances overlap and the KAM
ting the sequence of points that result from repeatedly applyrori petween them are broken. The overlap of nonlinear reso-
ing the map to each initial point. The set of points that arisey5nces leads to chaotic motion because the points in the
from a single in_itia_l poin_t can be r_efe_rred to as a trajectory Ofregion of overlap don’t know which periodic trajectory to
the map. If the initial points are distributed throughout phase&ying around. This chaotic motion always begins in the vi-
space,_the surface of section yv[ll_ prov[de an overview of thecinity of the separatrix, which is the boundary between a
dynamics of the system. The initial points may be chosen s@gnjinear resonance and the KAM tori that lie just outside.
that they lie on a regular grid in the phase space, or they mayor example, the region of chaotic motitsometimes called
be chosen at random. If there are noticeable gaps in the SuWhe stochastic laygrin Fig. 1 lies along the boundary be-
fgcg of section, then additional initial points can be chosen t@yeen the large resonance island and the KAM tori. Trajec-
fill in the gaps. o tories that start out anywhere in the chaotic region can wan-
For K=0 the standard map is integrable. The surface ofjer, or diffuse, throughout that region. For sufficiently large
section forK =0 consists of trajectories crossing horizontally K, all KAM tori will be destroyed and the entire phase space
from 6=0 to #=1 at constant values of Becausedis a  will be chaotic.
periodic coordinate, each of these trajectories really moves We also can use surfaces of section to explore the fractal
along a circle(or 1-torus. For higher dimensional integrable nature of a mixed phase spa@ae that contains both chaotic
systems, the trajectories also are confineghigher dimen-  and nonchaotic region®y zooming in on the edge of one of
siona) tori. These tori, on which the integrable trajectoriesthe resonance islands to see that each resonance is typically
are constrained to move, are knowniagariant tori. surrounded by smaller daughter resonances, which are in
Figure 1 shows a surface of section for the standard magurn surrounded by even smaller resonances, and so on. This
with K=0.8, for which the map is no longer integrable. The fractal structure illustrates that nonlinear resonances occur on
surface of section reveals many important features of thall scales in a chaotic Hamiltonian system.
map’s dynamics. For example, the group of nested elliptical Problem 1 Create surface of section plots for the standard
curves surrounding the origin is a structure known as a nonmap withK=0, K=1, andK=7. Describe the dynamics of
linear resonance. For two-dimensior{ar highe) systems the map for each value .
nonlinear resonances occur When the frequency Of motion in Problem 2 Determine the approximate value &f for
one dimension is rationally related to the frequency of moyyhjch all resonances other than the one centered at the origin
tion in a different dimension. In the case of a one-paye heen destroyed. Determine the approximate valie of

dimensional map, nonlinear resonances occur when the frgs \yhich the resonance centered at the origin is destroyed
quency of motion is rationally related to the map freqUency. o+ s yalue ofk the phase space will be almost entirely
For the standard map the point at the origin is mapped bac haotio

to the origin after each application of the map and is there-
fore called a fixed point. Nearby points wind around th_ISB. Individual trajectories
periodic trajectory as the map is repeatedly applied, forming
the elliptical curves that comprise the nonlinear resonance Plots of individual trajectories also can help us visualize

(or resonance islandThere also are a number of continuous certain aspects of conservative chaos. By choosing the
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Fig. 2. A portion of a chaotic trajectory for the standard map wkth
=1.13. The initial point is(0.5, 0.0001 The first 10 000 iterations of the 0.2 0.40.60.8 1 0.20.40.60.8 1
map are shown. Continued iteration would show further diffusiorr,in O O

because at this value &f all KAM tori are broken. ) ) . L
Fig. 3. An illustration of phase space flow and Liouville's theorem. Ript

shows 5000 initial points distributed randomly in a rectangular region of
phase space. The remaining plots show the distribution of trajectories after
proper initial conditions for a given value df, one can (b) one,(c) two, and(d) three iterations of the map witk=1.5.
easily create plots of periodic orbits, KAM tori, trajectories
trapped in resonance regions, or chaotic trajectories. Simply
examine the surface of section, choose an initial point thatem states that the area of any region of phase space is pre-
lies in the region to be examined, and plot the points thaserved under the application of a Hamiltonian ntapunder
result from repeated iterations of the map. Plots of chaotidime evolution in a continuous Hamiltonian sysferath-
trajectories can be particularly useful for identifying barriersematically this area preservation occurs because the Jacobian
to chaotic diffusion in phase space. If, for a given value ofof a Hamiltonian map, defined by
K, KAM tori still exist in phase space, these structures will

P . . . S 9bn+1 Ibni1
block the diffusion of a chaotic trajectory in thedirection. _— —

a6, arn

For sufficiently high values oK, all KAM tori will be bro- J= )
ken and chaotic trajectories can diffuse freelyrinThe last Mpsr gy |
KAM torus to be destroyed will be the one whose winding a0, ar,

number (essentially the amount that changes with each , . .
iteration of the mapis the reciprocal of the golden ratio. has determinant equal to one. The Jacobian for a continuous
Nonlinear resonances form where trajectories have ration&yStém can be defined in a similar way.

winding numbers. The golden ratio and its reciprocal are A Proper understanding of Liouville’s theorem involves
among the irrational numbers that are most difficult to ap_wsuahzmg classical dynamics as a flow of points in phase

proximate with rational numberébecause their continued SPace. Points flow from one location in phase space to an-

fraction expansions converge slowland thus a KAM torus ~ Other under application of the mapr under time evolution

with this winding number will be far from any nonlinear This visual picture can be ald.eq.by diagrams t_hat |Ilqstrate

resonance and the last to be destroyed by resonanéB‘? flow of a Iqrge number of initially nearby points. Figure

overlapl® 3 illustrates this phase space flow and the preservation of
Figure 2 shows the first 10 000 iterations of a chaotic tra27€@ required by Liouville’s theorem. FigureaBshows the

jectory for K=1.13 starting at the point0.5,0.0001 This initial conditions: five thousand points randomly selected in-

. i : side a rectangular region of the phase space. Figui®s 3
trajectory appears to be boundedrinimplying that KAM . _
tori still exist for this value ofK. However, this picture is 3(d) show the result of applying the mfor K =1.5) repeat-

. . . edly on this set of points. These diagrams illustrate that
somewhat misleading because even broken KAM(&wme- ' . . .
times called cantori gbecause of their Cantor set(—like struc?lthough the region occupied by the points is stretched and

ture) can provide a partial barrier to chaotic diffusion. The bent, its area remains constant. Thus, the flow of points in a

presence of cantori prevents this trajectory from diffusingHam“tonian system s like the flow of an incompressible
. . . : fluid. A imati f | of th I h
through all values of during the first 10 000 iterations of the uid. An animation composed of several of these plots shows

. . . how the group of points evolves under iterations of the ma|
map. If the first 100 000 iterations were shown, we would se group ot p b

. ; €&nd provides an excellent way to visualize the phase space
that the trajectory diffuses through the apparent boundarie Pz y P P

indicating that the apparent boundaries are really only partial

barriers to diffusion. There are no unbroken KAM tori for

values ofK>K* =0.971 6354 K.
Problem 353hoo_se the initial poinf0.6,0.1 and estimate  pyypjem 5 Examine the flow of points that lie inside a

the value ofk* by finding the smallest value &€ for which  opjinear resonance. Contrast this behavior with the flow of

the dlfoSIOI’l of the trajectory Im IS nO |0ngel‘ b|OCked dur' points in a Chaotic region Of the phase Space_

ing the first 10 000 iterations of the map.

Problem 4 Determine the Jacobian for the standard map
and show that its determinant is equal to one for all values of

D. Behavior of trajectories near a fixed point

C. Visualizing Liouville flow Fixed points(which are mapped back to themselves under

Plotting the evolution of a group of points in phase spaceone iteration of the mgpand periodic pointgwhich are
can help us visualize Liouville’s theorem. Liouville’s theo- mapped back to themselves after several iterations of the
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map play an important role in determining the overall dy- 0.1 T
namics of a Hamiltonian map. According to the Poineare R X _
Birkhoff theorem® whenK is increased from zero to some Ent y
small but finite value, trajectories with rational winding num- 0.05 \ /
bers will form into a sequence of alternating stafa#iptic) R L
and unstabléhyperbolig periodic points. Periodic points are TIE \
stable if nearby trajectories remain close and unstable if .
nearby trajectories move away. The stable periodic points
will become the centers of nonlinear resonance islands. The =0 . 025 \
unstable periodic points provide the seeds for chaotic motion L 1:/
(see the discussion of homoclinic tangles in the following
Thus, the stability of a given periodic point is crucial for —0.075 \
determining the character of the dynamics in the region of '\
phase space that surrounds the point. N
Here we will focus on analyzing the stability of fixed
points, but the analysis can be extended to deal with periodic o , _
points. The best way to analyze the stability of a fixed point”'9- #-_Stable and unstable directions for the fixed pointe,0 for K
: - . . =1.5. The forward and inverse maps were applied to 5000 points, initially
IS, 'tO Cons{trl_JCt the Stablllty matrike fo,r the point. The Sta_, distributed randomly in a rectangular region surrounding the fixed point.
bility matrix is a linear map that describes the local dynamiCsagter four iterations of the forward map, the points lie along the unstable
in the vicinity of the fixed point. If the eigenvalues of the direction (the line with positive slope After four iterations of the inverse
stability matrix are complex with unit modulus, the fixed map, the points lie along the stable directidie line with negative slope
point is stable and nearby trajectories will remain nearby. Buf'he modulo 1 restriction in Eq1) has been removed to make the results
if one eigenvalue has absolute value greater than one, trfasier to see, be_causésaperiodic coqrdinate and a valuerdslightly less
fixed point is unstable and nearby trajectories will movelan Zero is equivalent to a value oflightly less than one.
away from the fixed point along a certain axis. For a two-
dimensional map the stability matrix is the Jacobian, 9.
evaluated at the fixed point. The eigenvalues oba22ma-  points that lie along the line of negative slope are the result
trix P are given bya=[TrP=(TrP)°—4(DetP)]/2. Be-  of applying the inverse map four times. The flow of points
cause the map is area preserving, the determinant of the stean be clearly demonstrated by animating these pfots.
bility matrix is unity and the eigenvalues must come in pairs Another way to visualize the behavior of trajectories in the
of the forma and 1k. If | TrP|<2, then the eigenvalues of vicinity of an unstable fixed point is to create a flow diagram.
the stability matrix are complex conjugates with unit modu-A flow diagram shows a vector field that indicates the direc-
lus and the fixed point is stable. [fr P|>2, then the eigen- tion each point will move when the map is applied. Figure 5
values of the stability matrix are real numbers of the farm shows a flow diagram around the fixed poi6t5,0 for K
and 1k with |a|>1 and the fixed point is unstable. =1.5. Note that the arrows point out along the unstable di-
The eigenvectors of the stability matrix for an unstablerection and in along the stable direction of Fig. 4.
fixed point play an important role in determining the behav- Problem 6 Evaluate the stability matrigJacobia for the
ior of trajectories in the vicinity of the point. The eigenvector fixed point of the standard map #.5,0. Determine the
associated with the eigenvalue indicates the direction values ofK for which this fixed point is stable or unstable.
along which nearby points move away from the fixed pointFind the eigenvalues and eigenvectors of the stability matrix
(the unstable directignThe eigenvector associated withwl/ for K=1.5. Show that the eigenvector with eigenvalue
gives the direction along which nearby points move toward

the fixed point(the stable direction This effect can be dem-
onstrated in a way that is similar to the illustration of Liou-

ville’s theorem. Begin with a large number of points ran- D.01F 4 p v 1t 8 8 =~ = v r w7 P
domly distributed in the vicinity of the fixed point. As the P R P :
map is repeatedly applied to these points, the distribution AN A T o
will become compressed along the stable direction and 0.005f FF NI T T
stretched out along the unstable direction, making the un- £ : : S e e
stable direction easy to see. If we apply the inverse map s . : I R
r Of y s s r 22 o7

0h=0n+1—Tne1, Mmod 1, (3a e VAR AR AR S

P R ‘« 41 : :

D T T / /

(a=Taert asin2m6), mod 1, (30) R D L
2w P voaoa S

o a a a a A =~ [ A

rather than the forward map, then the distribution will be- 001} e - = et
come stretched out along the stable direction, making the 0.49 0.495 0.5 0.505 0.51

stable direction easy to see.
Figure 4 illustrates this effect. The plots were generated

using 5000 initial points distributed randomly in a rectangu-Fig- 5. Flow diagram in the vicinity of the fixed point 0.5, for K
=1.5. The arrows indicate that nearby points flow away from the fixed point

lar region aro_und the l,mStabIe ﬂxed_ pOIfﬁ.S,Q' Tor K along the unstable direction from Fig. 4 and flow toward the fixed point
=1.5. The points that lie along the line of positive slope aiong the stable direction from Fig. 4. The modulo 1 restriction in @.

show the result of applying the forward map four times. Thehas been removed as in Fig. 4.
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greater than one points along the unstable direction of Fig. 4

and that the eigenvector with eigenvalue less than one points

along the stable direction.

Problem 7 Evaluate the stability matrix for the fixed point

of the standard map &0,0). Determine the values d€ for r
which this fixed point is stable or unstable. Investigate what 0.4
happens in the surface of section when this fixed point be- _
comes unstable. sy

E. Homoclinic tangles

The idea of identifying stable and unstable directions as¥ig. 6. A portion of the homoclinic tangle surrounding the unstable fixed
sociated with an unstable fixed point can be extended. Imagpoint of the standard map €9.5,0 with K=1.5. The complete homoclinic
ine Constructing the set of all points in the phase space thattz,angle is infinitely more complicated than the curve shown here.
if acted on repeatedly with the inverse map, would eventu-

ally move in toward the unstable fixed point along the dlrec—Structed in an analogous way, with points distributed along

tion of the unstable eigenvector of the stability matrix. This,[h direction of the stable eigenvector and using the inver
structure is called the unstable manifold of the fixed point € direction of the stable eigenvector and using the Inverse

and the manifold as a whole is invariant under application of "@P- The combination of these two plots gives a partial pic-
ture of the homoclinic tangle. The complete tangle is an in-

the map. Close to the fixed point itself this structure is Aciitel licated struct d be vi dinit

straight line in the direction of the unstable eigenvector. Far- "I-e’y Complicated structure and can never be viewed In 1is
ther from the fixed point this line will begin to curve and Entrety. However, the more iterations of the map one uses to
turn, but it will never cross itself. Similarly, we can construct construct the tangle, the more of its complexity can be seen.

e stale meniold of e ed poath st of s trat 41 LTSI SO Shcesshe Leon o e proces
are eventually mapped in along the stable eigenvector by thgah etl y e g compiexity
moclinic tangle. Imagining the extrapolation of this process

forward map. The stable manifold will be a straight line P . . X ;
to an infinite number of map iterations allows us to visualize

along the stable eigenvector in the vicinity of the fixed point, . e )
but will curve when it is farther away. In an integrable sys—tmhﬁtﬁjonmplex'ty of the homoclinic tangle that leads to chaotic

tem, the unstable manifold of a particular fixed point will Problem 8 Creat lot of the h linic tanale for th
connect smoothly with the stable manifold of the same, or of. robiem reate a piot o Ine nomociinic tangie for the
a different, unstable fixed point. These smoothly connectiné‘xed point (0.5,0 with K=0.8. How is this homoclinic
manifolds form a separatrix. In a chaotic system these mantangdle different from the one shown in Fig. 67 Describe what
folds do not connect smoothly. In fact, they don’t connect atyOU Would expect to see if you created a plot of the ho-
all. Instead they cross each other an infinite number of time§0clinic tangle for the same fixed point wiki= 3. Test your
(while never crossing themselyesf the stable and unstable hypothesis.

manifolds emanate from the same unstable fixed point, then

this structure is called a homoclinic tangle. If they are fromF. Exponential divergence of trajectories and Lyapunov
different fixed points, it is called a heteroclinic tangle. The exponents

intersection points are called homoclinfor heteroclini¢

; - o . B le fi [ I hani I
points. Each homoclini¢or heteroclini¢ point is mapped to ecause unstable fixed points play such an important role

h h point in determining the dynamics of the system, it would be use-
an\(/)v er suc p.?'”.' ne that motion in the vicinity of a Ul 0 have a way of quantifying their instability. The eigen-
€ can easily imagine that motion in the vicinity ot a 4,6 o of the stability matrix with absolute value greater

;alr:jgle will be quite clomplex.”The _stablfetﬁndrtlmstable ma\?'fﬂan one can play this role, but another useful measure of the
'olds may occupy only a small region of the pnase space. Yq stability of a fixed point is the Lyapunov exponent. The
in this small region these manifolds must cross each other

infinite number of times without crossing themselves. To ac- apunov exponent is defined as=In|a|. Trajectories that
complish this feat, the manifolds must make tighter angStrt close to a typical unstable fixed point will move away

tighter turns as they twist back and forth in the phase spac%rom the fixed po!nt ex.ponent|ally. The'dlstanccinbetween the

This complex web of intersections between the two mani- VO pomlts aftgrn |tgrat|ons of the map iely~doe™". Stable

folds gives rise to chaotic motion in the region occupied byfixed points(with eigenvalues of unit modulusiave =0.

the tangle. The e>§ponent|al divergence of nearby trajectories is |Ilgs—
We can gain some appreciation for the complexity of gtrated in Fig. 7. The plot shows _the natural qu of the dis-

tangle by plotting a portion of the stable and unstable manitance, Ird,, between two trajectories as a functionrofvith

folds associated with an unstable fixed point. Figure 6 show& =1.5. One trajectory is the fixed point &.5,0 while the

a portion of the stable and unstable manifolds associatedther trajectory begins at (0t51078,0) and moves away

with the fixed point of the standard map @5,0 with K from the fixed point. The linear increase ofdpfor n<17

=1.5. A plot of the unstable manifold can be constructed byindicates that the distance between the two trajectories is

taking several initial points that are displaced from the fixedincreasing exponentially. For>17 the second trajectory be-

point along the direction of the unstable eigenvector of thegins to move closer to the fixed point, indicating that the

stability matrix but at randonfthough small distances. Ap- exponential divergence does not continue indefinitely. The

plying the forward map to these points will cause them toexponential divergence may cease because the trajectory has

spread out along the unstable manifold. Successive iteratiomsn up against barriers in phase space, or it may simply be

of the map will generate a more complete picture of thethat the trajectory has moved far enough from the unstable

unstable manifold. A plot of the stable manifold can be con-fixed point so as to be no longer repelled.
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0 eeen, RN course for undergraduate that focuses entirely on nonlinear
. dynamics. Such a course could include material on one-
5 . dimensional mapsiterated functiong continuous systems,
— i and dissipative chaos. Information on these topics can be
) K found in Refs. 1, 6-8.
a =10 .
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can facilitate the teaching of conservative chaos to under-book containing the code used to produce the figures in this article which
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5 . e of the animations mentioned in the article can be found at the website
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