Names of Ions

Naming Positive Ions (Cations)

With few exceptions (like NH_4^+), the positive ions in this course are metal ions. We name them by the following rules:

1. For a monatomic positive ion (e.g. a metal cation) the name is that of the metal plus the word "cation."

Ex. Mg^+ is magnesium cation

2. Some cases occur, especially in the transition series, in which a metal can form more than one type of positive ion. In these cases the charge of the ion is indicated by a Roman numeral in parentheses immediately following the ion's name.

Ex. Fe^{2+} is iron (II) cation and Fe^{3+} is iron (III) cation.

Finally, you will encounter the ammonium cation, NH_4^+ many times in this course. *Do not* confuse ammonium cation with the ammonia molecule, NH_3 .

Naming Negative Ions (Anions)

There are 2 types of negative ions; those only have one atom (monatomic) and those having several atoms (polyatomic)

1. A monatomic negative ion is named by adding *–ide* to the stem of the name of the nonmetal element from which the ion is derived.

Ex. F^- is fluoride. Se²⁻ is selenide. P^{3-} is phosphide.

2. Polyatomic negative ions are common, especially those containing oxygen (**called oxoanions**). The names of some of the most common are given on the back page. These must just be learned, however, there are some guidelines.

Ex. NO₃⁻ is the nitrate ion; NO₂⁻ is the nitrite ion $SO_4^{2^-}$ is the sulfate ion; $SO_3^{2^-}$ is the sulfite ion

The oxoanions having the grater number of oxygen atoms is given the suffix *-ate*, and the oxoanions having the smaller number of oxygen atoms is given the suffix *-ite*. For a series of oxoanions having more that 2 members the ion with the largest number of oxygen atoms has the prefix *per-* and the suffix *-ate*. The ion having the smallest number of oxygen atoms has the prefix *hypo-* and the suffix *-ite*.

Ex. ClO_4^- is the perchlorate ion; ClO_3^- is the chlorate ion; ClO_2^- is the chlorite ion and ClO is the hypochlorite ion.

Finally oxoanions that contain hydrogen are named by adding the word "hydrogen before the name of the oxoanions. If 2 hydrogen are in the compound we say "dihydrogen."

Ex. HPO_4^{2-} is the hydrogen phosphate ion and the H_2PO^- is the dihydrogen phosphate ion.

Table 3.1 Formulas and Names of Some Common Polyatomic Ions			
Formula	Name	Formula	Name
CATION: Post	itive Ion ammonium ion		
ANIONS: Neg Based on a CN^- $CH_3CO_2^-$ CO_3^{2-} HCO_3^-	gative Ions Group 4A element cyanide ion acetate ion carbonate ion hydrogen carbonate ion (or bicarbonate ion)	Based on a Gro ClO ⁻ ClO ₂ ⁻ ClO ₃ ⁻ ClO ₄ ⁻	up 7A element hypochlorite ion chlorite ion chlorate ion perchlorate ion
Based on a N0 ₂ ⁻ N0 ₃ ⁻ PO_4^{3-} HPO_4^{2-} $H_2PO_4^{-}$	Group 5A element nitrite ion nitrate ion phosphate ion hydrogen phosphate ion dihydrogen phosphate ion	Based on a tran CrO_4^{2-} $Cr_2O_7^{2-}$ MnO_4^{-}	nsition metal chromate ion dichromate ion permanganate ion
Based on a OH ⁻ SO_3^{2-} SO_4^{2-} HSO ₄ ⁻	Group 6A element hydroxide ion sulfite ion sulfate ion hydrogen sulfate ion (or bisulfate ion)		

© 2006 Brooks/Cole - Thomson