Practice Problems Chapters 3, 4, 9, 10 1. An ionic bond is best described as: d. CH403e. CH30 | | a. the sharing of electrons. b. the transfer of electrons from one atom to another. c. the attraction that holds the atoms together in a polyatomic ion. d. the attraction between 2 nonmetal atoms. e. the attraction between 2 metal atoms. | |----|---| | 2. | The empirical formula was determined to be C_4H_4O , if you know that the molecule has a mass between 130 and 140 g/mol, what is the molecular formula? | | 3. | Which of the following is an atomic element? a. Br b. H c. N d. O e. Mg | | 4. | Give the name for SnO. | | 5. | Give the structure for sodium chlorate. a. NaClO b. NaClO2 c. NaClO3 d. NaClO4 | | 6. | Calculate the molar mass of Al(C ₂ H ₃ O ₂) ₃ . | | 7. | How many N2O4 molecules are contained in 76.3 g N2O4? The molar mass of N2O4 is 92.02 g/mol. | | 8. | Give the mass percent of carbon in $C_{14}H_{19}NO_{2}$. a. 38.89% b. 72.07% c. 5.17% d. 2.78% | | 9. | Determine the empirical formula for a compound that contains C, H and O. It contains 52.14% C and 34.73% O by mass. a. C_2H_6O b. CHO c. $C_4H_{13}O_2$ | | 10. Which of these compounds is most likely to be ionic? A. KF | |---| | B. CCl ₄ C. CS ₂ D. CO ₂ E. ICl | | 11. A <i>nonpolar</i> covalent bond (i.e., pure covalent) would form in which of these pairs of atoms? | | A. Na – Cl B. H–Cl C. Li–Br D. Se–Br E. Br–Br | | 12. Which response includes all the molecules below that do not follow the octet rule? (1) H_2S (2) BCl_3 (3) PH_3 (4) SF_4 | | A. (2) and (4) B. (2) and (3) C. (1) and (2) D. (3) and (4) E. (1) and (4) | | 13. Determine the electron geometry (eg) and molecular geometry(mg) of BCl3. A. eg=trigonal planar, mg=trigonal planar B. eg=tetrahedral, mg=trigonal planar C. eg=tetrahedral, mg=trigonal pyramidal D. eg=trigonal planar, mg=bent E. eg=trigonal bipyramidal, mg= trigonal bipyramidal | | 14. Determine the electron geometry (eg) and molecular geometry (mg) of PCl ₃ ⁻ . A. eg=tetrahedral, mg=bent B. eg=tetrahedral, mg=trigonal pyramidal C. eg=trigonal bipyramidal, mg=linear D. eg=trigonal bipyramidal, mg=trigonal planar E. eg=octahedral, mg=linear | | 15. How many of the following molecules are polar? | BCl₃ CH₃Cl SiF₄ CO₂ - A. 1 - B. 2 - C. 3 - D. 4 - E. 0 16. Draw the Lewis structure for NO₂⁻ including any valid resonance structures. - 17. What volume of 0.305 M AgNO3 is required to react exactly with 155.0 mL of 0.274 M Na₂SO₄ solution? Hint: you will want to write a balanced reaction. - 18. What precipitate is most likely formed from a solution containing Ba⁺², Na⁺¹, OH⁻¹, and CO₃⁻². - A) NaOH - B) BaCO₃ - C) Na₂CO₃ - D) Ba(OH)2 - 19. According to the following reaction, what volume of 0.244 M KCl solution is required to react exactly with 50.0 mL of 0.210 M Pb(NO₃)₂ solution? $$2 \text{ KCl(aq)} + \text{Pb(NO3)2 (aq)} \rightarrow \text{PbCl2(s)} + 2 \text{ KNO3(aq)}$$ 20. Is it possible for a molecule to be nonpolar even though it contains polar bonds? Explain your answer and give an example. - 1. B - 2. C₈H₈O₂ - 3. E - 4. tin (II) oxide - 5. C - 6. 204.13 g/mol 7. 4.99 × 10²³ N₂O₄ molecules - 8. B 9. A - 10. A - 11. E - 12. A - 13. A - 14. B - 15. A - 16. 3 possible structures - 17. 278 mL - 18. B - 19.86 mL - 20. yes CF₄