Exploring The Driven Damped Pendulum

Derived from Section 6.3 of Classical Mechanics with Mazima by Todd Timberlake and J. Wilson Mixon,
Jr. (Springer, 2015), sites.berry.edu/ttimberlake/teaching/cm_maxima/.

1. If you have not already done so, download and install wzMazima from wxmaxima.sourceforge.net.
2. The equations of motion for our driven, damped pendulum system are:
T =,

b = —2Bv — wi sin(x) + Ywd cos(wt).

We will explore the motion of this system for w = 27 rad/s, wg = 1.5w, 8 = wp/4, and v = 1 with initial
values g = —7/2 and vy = 0. We can solve the system of ODEs using Mazima’s rk command, which
implements a fourth-order Runge-Kutta method with fixed time step. The code to set the parameter
values and solve the ODEs is:

omega:2x/pi$ omegal:1.5*omega$ beta:omegal/4$ gamma:1$

data: rk( [v, -2*beta*v - omegaO~2*omegalO*sin(x) + gamma*omegal~2xomegal*cos (omega*t)],
[x,v], [-%pi/2,0], [t, O, 200, 0.011)%

The first line in the code above sets the parameter values. The second and third lines implement the

rk command. The first argument of the rk command is a list that specifies the time derivatives of the

dependent variables (as determined by the equations of motion). The second argument is a list of the

dependent variables (z and v). The third argument is a list of initial values for the variables (—m/2

and 0). The final argument gives the independent variable, its initial value, its final value, and the

step size. Here we are using a step size of 0.01 s and solving from ¢t = 0 to ¢t = 200 s.

Type this code into Mazima and evaluate it. Make sure you are not receiving any error messages.
You can test the success of the computation by typing and evaluating “data[20001]”, which should
show the output from rk for ¢ = 200 (the 20,001st time value). Note that the output is a list of three
numbers: time ¢, angle x, and angular velocity v.

3. Next we want to use our solution to construct a plot of x versus t. We must first construct a list of
(t,z) data points using Mazima’s makelist command. Then we can plot that set of points using the
draw2d command. The code to accomplish these tasks is given below. (Note: the wx version of the
draw2d command displays the plot within a wzMazima notebook. Otherwise the plot will display in a
separate window.)

txL: makelist( [datal[i]l[1],datal[i][2]] , i, 1, 1001)$
wxdraw2d( xaxis = true, xlabel = "t (s)", ylabel = "x (rad)",
point_size = 0, points_joined = true, points(txL) )$

The first line of code above constructs our list of (¢, 2) ordered pairs. Note that data[i] is the *"
element of the output from rk, so each value of i corresponds to a different output time. The code
data[i] [1] is the first element (the ¢ value) of the i*" output, while data[i] [2] is the second element
(the x value). The list txL only includes the first 1001 output points, so it only extends to ¢ = 10 s
(1001 points with a step size of 0.01). The second and third lines of code create a plot of the list of
(t,z) ordered pairs, with the points connected by a line.

Construct a plot of z versus t using your solution from rk. Check with your instructor to make sure
your plot is correct. You should notice that the plot settles into a regular oscillation.

4. Now construct a plot of v versus ¢ using your rk solution. Note that the v values are stored in
datali] [3]. You should give your list of (¢,v) ordered pairs a different name (maybe tvL) to keep it
distinct from your list of (¢,x) ordered pairs. You should also change the label on the y-axis of the
plot. Check with your instructor to make sure your plot is correct. You should notice that the plot
settles into a regular (but decidedly non-sinusoidal) oscillation.
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Construct a plot of the trajectory for this pendulum in phase space (angular velocity v versus angle x).
In this case we need to construct a list of ordered pairs (z,v) and then plot that list. Again, give your
new list of ordered pairs a new name and use correct labels for your plot. This time extend your plot
to t = 200 s (so you should use the first 20,001 ordered pairs). Check with your instructor to make
sure your plot is correct.

You should have found that the phase space trajectory shows some transient behavior before settling
into what looks like a distorted ellipse. To focus on the steady-state motion and ignore the transient
behavior we can redo the plot, this time starting our list of ordered pairs with the 5001%¢ output value.
The resulting plot should show the phase space trajectory from ¢t = 50 s to t = 200 s.

The steady state motion of our pendulum seems to be periodic, but with what period? By analogy with
the driven, damped harmonic oscillator we might guess that the period is the period of the driving
torque. To check our guess we can sample the location of the pendulum in phase space after each
cycle of the driving torque. A plot of these points is called a “strobe plot” because it only shows the
system at discrete time intervals, much like viewing a moving object illuminated by a strobe light. To
construct our strobe plot we need to show the phase space position at one second intervals (since the
period of our driving torque is 1 s). To do this we simply add an extra argument to the makelist
command to construct a list that uses every 100** point (since our time step is 0.01 s, 100 times steps
is 1 s). Then we can plot the points using draw2d, but this time we don’t want to connect the dots.
The code below shows you how to accomplish these tasks.

strobe:makelist( [datal[i] [2],datal[i]l[3]], i, 5001, 20001, 100)$
wxdraw2d (xaxis = true, xlabel = "x (rad)", ylabel = "v (rad/s)",

point_type = 7, point_size = 1, points(strobel),

xrange = [-Ypi,%pil, yrange = [-20,20] )$
Use the code to construct your strobe plot. You should see only a single point. Really this is 150
points that all lie at the same location. This illustrates that the motion of this pendulum is indeed
periodic with a period equal to 1 s (the period of the driving torque).

Now you have all of the code in place to explore the motion of the driven, damped pendulum for a
variety of parameter values. Investigate the motion for v = 1.075 (all other values the same). How is
the motion different from that with v = 1?7 In particular, how has the period of the motion changed?

Do the same for v = 1.081. You may want to adjust the xrange and yrange of your strobe plot to
get a better view of what is going on. How did the period of the motion change from v = 1.075 to
v = 1.0817

Repeat your computations, this time using v = 1.1. Is the motion periodic for this value of v? (Note
that the points in the strobe plot are limited to a small region of phase space, but they do not seem
to form a countable set. This structure is known as a strange attractor.)

Repeat your computations, this time using v = 1.13. Is the motion periodic for this value of v, or is it
chaotic? If it is periodic, what is the period?
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The plot shown below is known as a bifurcation diagram.® To construct a bifurcation diagram for our
pendulum we plot the = (angle) values from our strobe plots, ignoring the transient motion at small
times, for many different values of . In the plot, ¢ represents the angle that we are calling x. Note
that for some values of v there seems to be a single curve. For those values the motion is periodic with
the same period as the driving torque. Likewise, when there are two curves the motion is periodic with
a period twice that of the driving torque (the strobe plot alternates between two different points in
phase space). Describe how the bifurcation diagram shown below corresponds to the motion you saw
for v = 1,1.075,1.081, 1.1 and 1.13.
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Next investigate the motion for v = 1.5. What is different about the behavior of the z coordinate in
this case? Explain what is happening with the motion of the pendulum.

To construct a strobe plot for the case v = 1.5 we must first compute the principal value of the x
values. The principal value is just the angle, equivalent to z, that lies in the range from —m to w. To
find the principal angle we use Mazima’s mod command. The command mod(a,b) gives the value of
a, modulo b. To find the principal value of x, we must first add «, then find the value modulo 2. The
result will be an angle in the range 0 to 27, but it is the wrong angle because we added 7 at the start.
So we must then subtract 7 to get the correct principal value. The code below shows how to construct
the list of ordered pairs for our strobe plot.

strobe: makelist( [mod( datali] [2]+Vpi,2*)pi)-%pi, datal[i][3]], i, 5001, 20001, 100)$

Construct this list and make a plot of the points. Is the motion periodic, or does the strobe plot display
a strange attractor?

IThis bifurcation diagram is taken from Classical Mechanics by John R. Taylor (University Science Books, 2005), p. 484).
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Strange attractors are characteristic of chaotic motion in dissipative systems like the driven, damped
pendulum. To qualify as chaotic, a system must display sensitive dependence on initial conditions.
Technically, sensitive dependence means that trajectories that start with only slightly different initial
conditions will diverge exponentially over time.

We can investigate this sensitive dependence in our pendulum system by looking at the motion of two
pendula with v = 1.5. We will keep all other parameters as before, but we will start one pendulum
with g = —7/2 and the other with zy = —7/2+0.001 (both will have vy = 0). This tiny difference in
initial angle should grow rapidly over time in this chaotic system and eventually the trajectories will
diverge noticeably. Use the computational tools discussed above to construct a single plot showing x
versus t for both of these pendula, for t = 0 to 30 s. Note that you can include more than one points
command within a single draw2d command.

You should have found that the trajectories of the two pendula diverge noticeably after about 10
seconds. Now go back and decrease the initial separation of the two pendula by a factor of ten. Do the
trajectories still diverge noticeably? After how much time? Repeat this procedure until you convince
yourself that each time you reduce the initial separation by a factor of ten you just delay the divergence
of the trajectories by a few seconds.

The behavior you have just observed (decreasing separation by a factor of ten merely adds a few
seconds to the divergence time) indicates that these trajectories are diverging exponentially. To prove
this we can construct a plot of In|d| versus ¢, where d is the difference between the angles of the two
pendula. Construct this plot (note that Mazima uses log for the natural logarithm function and abs
for the absolute value function). You should find that the plot shows large fluctuations, but generally
trends upward in a linear fashion. The slope of this general trend is known as the Lyapunov exponent
(M) for the motion. Roughly speaking, the distance d(t) between the pendula at time ¢ is given by
d(t) =~ d(0)exp(At). As long as A > 0 then the trajectories are diverging exponentially and the motion
is chaotic. If A < 0 then the trajectories are converging exponentially.

To find out more about the driven, damped pendulum and other classical systems that you can explore
with the Maxima computer algebra system, check out Classical Mechanics with Mazima by Todd
Timberlake and J. Wilson Mixon (Springer, 2016). You can find out more about this book at
sites.berry.edu/ttimberlake/teaching/cm_maxima/.



