
Harmonic Oscillator: Series Solution

In this tutorial you will solve the EEP for the harmonic oscillator with V (x) = −kx2. The solution
will employ the “method of Frobenius,” or the power series method. This is a powerful method for solving
differential equations which we will see again later in this course.

1. The EEP for the harmonic oscillator is
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where ω =
√
k/m. We can change variables to ξ = x

√
mω/h̄ and then the EEP equation becomes
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First we will consider the asymptotic limit of this equation as ξ → ±∞. Write the approximate
equation that is valid for this limit.

2. Show that
ψ(ξ) = Ae−ξ

2/2 +Beξ
2/2

is the solution to the approximate equation.

3. Use physicality conditions to determine which of the constants (A and B) must be zero, and explain
why it must be zero.

4. Now we will assume that the full EEP has a solution of the form

ψ(ξ) = h(ξ)e−ξ
2/2

so that it has the appropriate form in the asymptotic limit. But we still need to find h(ξ) that satisfies
the EEP. Substituting this expression for ψ into the full EEP and canceling common factors we find

d2h

dξ2
− 2ξ

dh

dξ
+
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h̄ω
− 1

)
h = 0.
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We will attempt to solve this equation by assuming that h can be represented as a power series in ξ:

h(ξ) =

∞∑
j=0

ajξ
j .

First we will need to evaluate derivatives. Find the series that represents dh/dξ.

5. Find the series that represents ξ(dh/dξ).

6. Find the power series that represents d2h/dξ2.

7. Think carefully about the first couple of terms in the series above. Should they all really be there?
Are any of them zero? If so, rewrite the initial value of the index so that none of the terms is zero.

8. Rewrite your series for d2h/dξ2 in terms of the index i = j − 2.

9. Note that i (like j before) is a “dummy index”, meaning it is just a placeholder that takes on different
values in the sum. There is no reason we can’t replace i with a different symbol. Rewrite your series
from the previous question, but replace i with j.
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10. Note that you now have series expressions for d2h/dξ2, ξ(dh/dξ), and h. All of these expressions are
sums from j = 0 to j =∞, with each term proportional to ξj . Go back to the differential equation for
h and substitute these series expression in the proper places. Combine like terms to get an expression
of the form

∑∞
j=0[. . .]ξj = 0.

11. Explain why the coefficient of ξj must vanish for each value of j.

12. Set the coefficient equal to zero and solve for aj+2. This result is known as a recursion relation. It can
give you the values of aj , for all even j, in terms of a0. Likewise, the recursion relation can give you
the values of aj , for all odd j, in terms of a1.

13. Unfortunately there is a physical problem with the series solution generated by the recursion relation
above. If either the odd or even coefficients are allowed to continue indefinitely then the wave function
will not be normalizable. We can get rid of all even coefficients by setting a0 = 0. Likewise, we can
get rid of all odd coefficient by setting a1 = 0. But we can’t do both (or else h = 0 and ψ = 0, which is
bad). Let’s say we let a0 = 0 and a1 6= 0. Then we need an+2 = 0 for some odd n. Use the recursion
relation to find the values of E (for any n) that will ensure that this condition is met.
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The same equations, but for even values of n, ensures that we will have a normalizable solution with
a1 = 0 and a0 6= 0. So we have two sets of solutions, both with energy eigenvalue En = h̄ω(n+ 1/2):

Even solutions in which aj = 0 for all odd j, and aj = 0 for all even j > n (for some even n). The
non-zero coefficients can be written (using the recursion relation) in terms of a0. The value of a0 can

be found by requiring that ψ(ξ) = h(ξ)e−ξ
2/2 be properly normalized. These solutions will have even

spatial symmetry about x = 0.

Odd solutions in which aj = 0 for all even j, and aj = 0 for all odd j > n (for some odd n). The non-zero
coefficients can be written (using the recursion relation) in terms of a1. The value of a1 can be found

by requiring that ψ(ξ) = h(ξ)e−ξ
2/2 be properly normalized. These solutions will have odd spatial

symmetry about x = 0.
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