Hydrogen Atom Tutorial

We have seen that the radial equation for the hydrogen-like atom with Z protons can be written
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1. Write an approximate form for this differential equation in the limit p — co.

2. Solve the approximate equation to find the asymptotic solution for u(p) in the limit p — oo.

3. Apply the physicality conditions to find the physically relevant asymptotic solution.

4. Write an approximate form for the radial equation in the limit p — 0.

5. Show that u(p) = Ap*T* + Bp~* is the general solution for this approximate equation.
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Apply the physicality conditions to find the physically relevant asymptotic solution.

Given our two asymptotic solutions we will define a new function v(p) such that u(p) = p**le=v(p).
Substituting this into our original radial equation we get
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Now we will try to solve this differential equation using a power series method. Assume a solution of

the form .
v(p) = P’
=0

Compute dv/dp. Rewrite the sum, if necessary, so that each term involves p/ and the sum starts at
j=0.

Compute p(dv/dp). Rewrite the sum, if necessary, so that each term involves p/ and the sum starts at
j=0.

Compute d?v/dp?.

Compute p(d?v/dp?). Rewrite the sum, if necessary, so that each term involves p’ and the sum starts
at j =0.

Substitute the sums you found above into the differential equation for v(p).
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Note that each term in the sum must be zero (do you understand why?). Use this fact to solve for
¢j+1 in terms of ¢;.

In order to get a physically relevant (i.e. normalizable) wave function this series must terminate at
some point. So there must be some value of j (let’s call it jy,q5) such that for j > je, we have ¢; = 0.
Solve for this jq.. What is the minimum value of j,,q.7

We can define a new quantum number n = jpnq.: + £ + 1. Solve for pg in terms of n. What is the
minimum value of n?

Use the definition of py to solve for x in terms of n (and constants). To simplify this expression we
can introduce a new constant called the Bohr radius
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~ 0.529 x 1071° m.

Write k as a function of Z, a, and n.

Use the definition of x to solve for E in terms of n (and constants). The solutions E, are the energy
eigenvalues of the hydrogen-like atom.



