
Adding Angular Momentum Tutorial

Recall our definition for the spin matrices:

Sx =
h̄

2

(
0 1
1 0

)
, Sy =

h̄

2

(
0 −i
i 0

)
, Sz =

h̄

2

(
1 0
0 −1

)
, and S2 =

3h̄2

4

(
1 0
0 1

)
.

For this tutorial we will also introduce a new notation for the spin up and spin down states:

↑=
(

1
0

)
, ↓=

(
0
1

)
.

1. Evaluate the following results and give your answer in the new notation:

(a) Sz ↑=
(b) Sz ↓=
(c) Sx ↑=
(d) Sx ↓=
(e) Sy ↑=
(f) Sy ↓=
(g) S2 ↑=
(h) S2 ↓=

2. Now consider a situation in which we have two particles with spin-1/2 (like a hydrogen atom, in which
both the proton and electron have spin-1/2). Suppose the electron is spin-up and the proton is spin-
down. We can represent this state as ↑↓. There are three other possible states. Write these states
below using the new notation.

3. Now consider the operator Sz = S
(1)
z + S

(2)
z , where S

(1)
z is an Sz operator that acts only on the first

particle (the electron), while S
(2)
z acts only on the second particle. Evaluate Sz ↑↑. Is ↑↑ an eigenstate

of Sz? If so, what is its eigenvalue?

4. Evaluate Sz ↑↓. Is ↑↓ an eigenstate of Sz? (Think carefully about this.) If so, what is its eigenvalue.
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5. Evaluate Sz ↓↑. Is ↓↑ an eigenstate of Sz? If so, what is its eigenvalue.

6. Evaluate Sz ↓↓. Is ↓↓ an eigenstate of Sz? If so, what is its eigenvalue.

7. So all four of these states are eigenstates of Sz, but two of them have the same eigenvalue. What’s
going on? To figure it out we need to look at the operator

S2 = (S1 + S2) · (S(1) + S(2))

= (S(1))2 + (S(2))2 + 2S(1) · S(2)

= (S(1))2 + (S(2))2 + 2S(1)
x S(2)

x + 2S(1)
y S(2)

y + 2S(1)
z S(2)

z .

Evaluate S2 ↑↑. Is ↑↑ an eigenstate of S2? If so, what is its eigenvalue?

8. Evaluate S2 ↑↓. Is ↑↓ an eigenstate of S2? If so, what is its eigenvalue?

9. Evaluate S2 ↓↑. Is ↓↑ an eigenstate of S2? If so, what is its eigenvalue?
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10. Evaluate S2 ↓↓. Is ↓↓ an eigenstate of S2? If so, what is its eigenvalue?

11. So ↑↑ and ↓↓ are simultaneous eigenstates of Sz and S2. But ↑↓ and ↓↑ are not eigenstates of S2 (even
though they are both eigenstates of Sz with eigenvalue 0). Let’s consider linear combinations of these
two states. Evaluate S2(↑↓ + ↓↑). Is this state an eigenstate of S2? If so, what is its eigenvalue?

12. Evaluate S2(↑↓ − ↓↑). Is this state an eigenstate of S2? (Think carefully about this.) If so, what is
its eigenvalue?

13. You should have found three states whose eigenvalues for S2 correspond to s = 1. Determine the value
of the quantum number m for each state and then complete the table below by writing the (properly
normalized) combination of single particle states in the correct spot.

|sm〉 written in terms of single-particle states

|1− 1〉

|10〉

|11〉

14. You should have found one state whose eigenvalue for S2 corresponds to s = 0. Determine the value
of the quantum number m for this state and then complete the table below by writing the (properly
normalized) combination of single particle states in the correct spot.

|sm〉 written in terms of single-particle states

|00〉
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15. Write the state ↑↓ in terms of the new |sm〉 states.

16. So we see that if we have a particle in a state |s1m1〉 and another in a state |s2m2〉, the combination
of the two particles can form a variety of states |sm〉. We must have m = m1 +m2, but s can take on
different values ranging from a minimum of |s1 − s2| to the maximum value s1 + s2, in unit steps. For
example, if we have a particle with s1 = 3/2 and another particle with s2 = 1 what are the possible
values of s?

17. Suppose we have a particle with s1 = 3/2 and another particle with s2 = 1. We want to know what
combination of single-particle states will give us the eigenstate |s = 3

2 m = − 1
2 〉. To determine this we

use the formula
|sm〉 =

∑
m1+m2=m

Cs1s2s
m1m2m|s1m1〉|s2m2〉

where the constants Cs1s2s
m1m2m are called Clebsch-Gordan coefficients. You can find a table of these

coefficients on page 188 of the textbook. Read the table caption and try to figure out the coefficients
you need to write the | 32 −

1
2 〉 state in terms of the single-particle states. [Hint: you need the values

from a single column of the table.]
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18. The tables work the other way too. Suppose we want to write the state
|s1 = 3

2 m1 = − 1
2 〉|s2 = 1 m2 = 1〉 as a linear combination of the |sm〉 states. We just use the formula

|s1m1〉|s2m2〉 =
∑

m1+m2=m

Cs1s2s
m1m2m|sm〉.

Try to determine the appropriate linear combination using Table 4.8. [Hint: you need the values from
a single row of the table.]

19. Suppose you have a particle with spin-1/2 and another with spin-2. Their combined state is | 52
1
2 〉. If

you measure the S
(1)
z (where particle 1 has spin-1/2), what values could you get? Which one is the

most likely?

20. This procedure for adding spin angular momentum can be applied to other types of angular momentum.
For example, if you have a spin-up electron in a hydrogen atom state with ` = 2 and m = −1, what
possible states of total angular momentum |JM〉 could the electron be in? What is the probability
that it would be found in each of these states?

21. An electron with spin-up is in the hydrogen atom state ψ320. What is the probability that this electron
would be found in the total angular momentum state | 52 −

1
2 〉? [DO NOT USE the table of Clebsch-

Gordan coefficients for this question! You don’t need them.]
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