
Identical Particles Tutorial

1. Consider a wave function representing a system of two identical particles. Suppose we solve the EEP
for this system and write the eigenstates as ψ(r1, r2), where r1 and r2 represent the positions of the
first and second particles. Now consider the “particle exchange operator” P . This operator simply
exchanges the locations of the two particles. Since the two particles are identical, this shouldn’t have
any real effect on the system.1 What do you get if you apply this operator to the state ψ(r1, r2)?

2. What do you get if you apply P 2 to ψ(r1, r2)?

3. We know that [P,H] = 0 because the Hamiltonian can’t possibly change under the exchange of two
identical particles.2 Therefore it should be possible to find simultaneous eigenstates of H and P . Let’s
assume that ψ(r1, r2) is such a simultaneous eigenstate. What are the possible eigenvalues for P for
this state?

4. So we find that simultaneous eigenstates of P and H must satisfy ψ(r1, r2) = ±ψ(r2, r1). It turns
out that the ± has physical significance. Particles with half-integer spin (called fermions) have the
minus sign, while particle with integer spin (called bosons) have the plus sign. Now suppose we have
two identical bosons, each of which is in a well-defined state. The two states are designated ψa and
ψb. Show that the simple product of ψa(r1) and ψb(r2) is not generally an eigenstate of the particle
exchange operator.

5. What about ψb(r1)ψa(r2)? Is it an eigenstate of the particle exchange operator?

6. Construct a linear combination of these two product states that is an eigenstate of the particle exchange
operator with the proper eigenvalue (remember these particles are bosons). Show that the state you
have constructed is an eigenstate with the correct eigenvalue.

1Note that in quantum mechanics, when we say two particles are identical we mean that they are truly indistinguishable.
There is no way to tell one electron from another electron. All electrons are fundamentally identical.

2Usually the Hamiltonian depends on |r1−r2|, in which case it is obviously invariant under the exchange of the two particles.
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7. Assuming ψa and ψb are orthonormal, normalize the eigenstate of P that you found in the previous
question.

8. What happens if the two particle are in exactly the same state (say, ψa)? Write the resulting wave
function below. [Note: you may need to rethink the normalization.]

9. Now what if these particles are fermions? Construct a linear combination of these two product states
that is an eigenstate of the particle exchange operator with the proper eigenvalue (remember these
particles are bosons). Show that the state you have constructed is an eigenstate with the correct
eigenvalue. Normalize the wave function.

10. What happens if the two particle are in exactly the same state (say, ψa)? Write the resulting wave
function below.

11. Is it possible for two identical fermions to be in the same quantum state? [Note: this is the famous
Pauli Exclusion Principle. It follows directly from the symmetry of the two-particle wave function
under the exchange of particles.]

12. Now consider a two particle harmonic oscillator system in which the particles don’t interact with each
other at all. The single-particle energy eigenstates are ψn(x) and eigenvalues are En = (n + 1/2)h̄ω.
If the two particles are bosons, what is the lowest energy eigenstate for this system and what is the
energy eigenvalue of that state? [Note: introduce the variables x1 and x2 for the locations of the two
particles, but consider the symmetrization requirements above.]
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13. What is the first excited state and what is its eigenvalue? Is there more than one state with this
energy?

14. Now consider the case where the particles are fermions. What is the lowest energy state and what is
its eigenvalue?

15. What is the first excited state for the two fermions, and what is the eigenvalue for this state? Is there
more than one state with this energy?
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