
Observables as Hermitian Operators

• All observable physical quantities are represented in quantum mechanics by operators. In this tutorial
we will explore some properties that these operators must have.

• Property 1: When any operator Q̂ acts on a physical (i.e. in the Hilbert space) quantum state |Ψ〉,
it produces another state vector Q̂|Ψ〉 = |Q̂Ψ〉. Most of the time this new state vector will also be
in the Hilbert space, but there are some pathological cases. If needed, we can always exclude these
pathological states from the domain of our operator.

• Property 2: The expectation value of of any operator must be real.

• Show that Properties 1 and 2 imply that 〈Ψ|Q̂Ψ〉 = 〈Q̂Ψ|Ψ〉.

• Operators that satisfy 〈Φ|Q̂Ψ〉 = 〈Q̂Φ|Ψ〉 for all |Ψ〉 and |Φ〉 in the Hilbert space are said to be
Hermitian. Show that the operator p̂ = −ih̄d/dx is Hermitian by writing 〈Φ|p̂Ψ〉 as an integral. Then
try to rewrite the integral to form 〈p̂Φ|Ψ〉. (Hint: use integration by parts.)
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• Now suppose we choose to represent our quantum states in a complete basis with discrete basis vectors
|n〉 (so there are as many basis vectors as whole numbers). Then we can write the right vector for our
quantum state as

|Ψ〉 =
∑
n

cn|n〉

and the left vector for the same state as

〈Ψ| =
∑
m

c∗m〈m|.

Use this basis to write the expectation value 〈Q̂〉.

• Let’s define Qmn = 〈m|Q̂|n〉. Rewrite the expectation value 〈Q̂〉 using this definition. Show that the
result is equivalent to multiplying a column vector with components cn by a matrix with elements Qmn

and then multiplying that result by a row vector with components c∗m.

• Show that if Q̂ is Hermitian then Q∗nm = Qmn. (Note: we define the Hermitian conjugate Q̂† of a
matrix as Q†mn = Q∗nm. Then Q̂† = Q̂ if Q̂ is a Hermitian matrix/operator.)
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• Suppose our basis vectors |n〉 are eigenstates of the operator Q̂ so that Q̂|n〉 = qn|n〉. Evaluate 〈Q̂〉 for
the state |Ψ〉 =

∑
n cn|n〉. (Note: you will need to start with a double sum, but you should be able to

reduce to a single sum.) The set of eigenvalues qn of an operator Q̂ is known as the spectrum of Q̂.
This is related to the spectrum of light emitted by a gas, but it’s not quite the same.

• What is the expectation value for Q̂ when the quantum state is |n〉?

• What is the expectation value for Q̂2 when the quantum state is |n〉?

• Calculate the standard deviation σQ for the state |n〉. What does this result tell you about the state
|n〉?

• Show that the eigenvalues qn must be real by evaluating 〈n|Q̂n〉 and 〈Q̂n|n〉 and using the fact that Q̂
is Hermitian.
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• Show that two eigenstates |n〉 and |m〉 with distinct real eigenvalues, qn and qm, are orthogonal to each
other. Evaluate 〈m|Q̂n〉 and 〈Q̂m|n〉 and use the fact that Q̂ is Hermitian.

• Note that two eigenstates that have the same eigenvalue (a situation called degenerate eigenvalues) are
not necessarily orthogonal. However, they can be made orthogonal using the Gram-Schmidt procedure.
Consider two vectors:

|f〉 =

(
3
−4

)
, |g〉 =

(
2
1

)
.

Find a unit vector |f ′〉 that is parallel to |f〉.

• Compute the inner product 〈f ′|g〉.

• Find the vector |h〉 = |g〉 − 〈f ′|g〉|f ′〉.
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• Find the unit vector |h′〉 that is parallel to |h〉.

• Show that |f ′〉 and |h′〉 are orthogonal.

• Note that if f〉 and |g〉 were eigenstates of Ô with the same eigenvalue q, then |f ′〉 and |h′〉 are also
eigenstates of Ô, both with eigenvalue q. Therefore the eigenstates of a Hermitian operator can be
made to form a complete set of orthonormal basis vectors.

5


