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Astronomy 120. The Copernican Revolution

Name Full Partial None

introduction

Here is what we know so far about Ptolemy’s theories for the motion of the planets:

1. The deferent/epicycle model can produce retrograde motion and it automatically (naturally)
accounts for the connection between retrograde and brightness.

2. Ptolemy could ensure that superior planets retrograde at opposition by synchronizing the
motion of the planet along the epicycle with that of the Sun.

3. Ptolemy could ensure that inferior planets stay close to the Sun by synchronizing the motion
of the epicycle center along the deferent with that of the Sun (thus keeping the center of the
epicycle on the Earth-Sun line).

4. The period of the motion along the deferent is just the planet’s zodiacal period.

5. The period of the motion along the epicycle (measured relative to the deferent) is just the
planet’s synodic period.

6. Only the ratio of the size of the epicycle to the size of the deferent matters. If we rescale
both circles by the same factor there will be no observable change.

7. Ptolemy employed the eccentric and equant devices to account for changes in the apparent
speed of the planets across the sky.

In this lab we are going to focus on a simplified version of the Ptolemaic models, ignoring the
eccentric and equant. Our goal is to determine the relative sizes of the epicycle and deferent for
each planet. In other words, we want to find out the value of Re/Rd for each planet, where Re is
the radius of that planet’s epicycle and Rd is the radius of that planet’s deferent. Once we have
determined the Re/Rd ratios, we can add one more assumption used by Ptolemy and build up a
picture of the entire Universe as envisioned by Ptolemy and his followers.



size of epicycles

1. Let’s start by trying to find Re/Rd for an inferior planet. Run the Inferior Ptolemaic

simulation. Play the simulation for Venus. Do your best to pause the simulation when Venus
is at its maximum elongation from the Sun. Sketch the arrangement of the circles below.
Make sure to indicate the Earth, the deferent, the epicycle, Venus, the Sun’s orbit, and the
Sun in your sketch. Label the angle that corresponds to Venus’ maximum elongation with a
θmax.

2. In your diagram above, draw line segments from Earth to the center of the epicycle, the
center of the epicycle to Venus, and Venus to Earth. These line segments form a triangle.
Redraw the triangle in the space below. Label the line segment from Earth to the center of
the epicycle with Rd (because it is a radius for the deferent circle). Label the line segment
from the center of the epicycle to Venus with Re (because it is a radius for the epicycle). Label
the angle θmax as above. One of the other angles in this triangle is a right angle. Indicate
which angle is a right angle in your diagram.

3. Use trigonometry (see App. B) to write an equation that relates the angle θmax to the ratio
Re/Rd.



4. We know that Venus has a maximum elongation of 48◦. Use this information to determine
the ratio Re/Rd for Venus.

5. The geometry works the same way for Mercury. The only difference is that Mercury has a
maximum elongation of only 28◦. Determine the ratio Re/Rd for Mercury.

6. Now we have found the ratios Re/Rd for both inferior planets. Let’s turn our attention to
the superior planets. This is a bit harder. Quit Inferior Ptolemaic and run the Superior

Ptolemaic program. Play the simulation (if necessary) for Mars until Mars is exactly in
opposition to the Sun. Draw a diagram showing this situation in the space below. Make sure
to indicate the Earth, the deferent, the epicycle, Mars, the Sun’s orbit, and the Sun in your
sketch.



7. Now play the simulation again and pause it when Mars is in quadrature. Recall that if Mars
is in quadrature then that means Mars will appear to be 90◦away from the Sun as seen from
Earth. Sketch the situation in the space below. Make sure to indicate the Earth, the deferent,
the epicycle, Mars, the Sun’s orbit, and the Sun in your sketch. Draw the line segment from
the Earth to the Sun, from the Earth to the center of the epicycle, from the center of the
epicycle to Mars, and from Mars to Earth. TWO of the angles in your diagram are right
angles. Indicate which angles are right angles in your diagram. Check with your instructor
to make sure your diagram is correct before moving on.

8. In your diagram for the previous question three of the line segments form a right triangle.
Copy this right triangle into the space below. Also include the line segment from the Earth to
the Sun. Label the vertex of the triangle that correspond’s to Earth’s location e, the vertex
that corresponds to Mars m, and the vertex that corresponds to the center of the epicycle c.
Label the Sun’s location s. Label the angle 6 cem with θ. Label the line segment ēc with Rd

(because ēc is a radius for Mars’ deferent). Label the line segment c̄m with Re (because c̄m is
a radius for Mars’ epicycle).

9. Use trigonometry (see App. B) to write an equation that relates the angle θ to the ratio
Re/Rd.



10. OK, this is great, we found an equation for Re/Rd just as we did for the inferior planets.
But what is θ? Unfortunately, θ is not an angle we can directly measure. But we CAN
figure it out, because we can determine the angles through which the Sun and Mars have
moved between our two pictures above. Look back at your two diagrams. When Mars was
in opposition the angle sec was 180◦. When Mars is in quadrature the angle sec is 90◦ + θ.
The difference between these two angles must be due to a difference between how much the
point s has moved and how much the point c has moved, which is an angle we will call α. So
we find that:

180◦ − (90◦ + θ) = α.

Solve this equation for θ in terms of α and write your result in the space below.

11. Suppose the time between these two pictures (ie, the time from when Mars is in opposition
to when it is in quadrature) is tQ. Let the period of the Sun’s motion around Earth (which
is one year, of course) be denoted T . During the time T the Sun moves 360◦on its orbit.
Through how many degrees does the Sun move in a time tQ? Give an expression for this
angle in the space below. Ask your instructor for help if you need it.

12. We also need to determine the angle through which the center of the epicycle has moved
during this time. The center of the epicycle moves around the deferent with a period equal
to the planet’s zodiacal period, which we will denote by Tz. So during a time Tz the epicycle
center moves 360◦. Through how many degrees does it move in a time tQ? Give an expression
for this angle in the space below.

13. Now we want to find the difference between the angle through which the Sun has moved and
the angle through which the epicycle center has moved. That difference is the angle we have
called α. Use your results from the last two questions to write an expression for α in the
space below.



14. For Mars, the time from opposition to quadrature is tQ = 106 days. The zodiacal period of
Mars is Tz = 686 days. Of course, the period of the Sun’s orbit is T = 365 days. Find the
value of α for Mars.

15. Use this value of α to find the value of θ for Mars.

16. Now use your value for θ and the equation you derived above to find Re/Rd for Mars.

17. OK, so that was a lot harder than it was for inferior planets. But now that you have walked
through it step by step, let’s see if you can apply the same procedure to find Re/Rd for Jupiter
and Saturn. Complete the table below.

Planet tQ Tz 360◦tQ/T 360◦tQ/Tz α θ Re/Rd

Jupiter 87.5 days 4283 days

Saturn 86.9 days 10613 days



18. That was a lot of work, so you might want to rest for a minute. Once you are ready to go
again, we will try to figure out how to put all of these deferents and epicycles together to build
up a picture of the entire Universe. To do this we need to include an important assumption
that Ptolemy made in his book The Planetary Hypotheses. In that book he assumed that
the deferents and epicycles were really equators of solid spheres that were rotating around in
the heavens. He wanted to make sure that the spheres for one planet did not overlap with
those for another, but otherwise he wanted everything as tightly packed as could be so as
to avoid having any empty space (recall that Aristotle said a vacuum could not exist). So
Ptolemy assumed that the maximum distance from Earth to a given planet must be equal to
the minimum distance from Earth to the next planet out.

To understand how to use this assumption we must first be able to determine the ratio of the
maximum distance to the minimum distance for a single planet. The table below will help you
do this. For each planet we assume that Rd = 1. Then we use our values for Re/Rd to find the
value of Re. The minimum distance from Earth to the planet is just dmin = Rd−Re (assuming
all deferents are centered on Earth). The maximum distance is just dmax = Rd + Re. Then
the ratio of the maximum distance to the minimum distance is just dmax/dmin. Complete the
table below to determine these ratios. [Note that I have included the Sun and Moon, which
in our simple model do not have epicycles.]

Planet Rd Re dmin dmax dmax/dmin

Moon 1 0 1 1 1

Mercury 1

Venus 1

Sun 1 0 1 1 1

Mars 1

Jupiter 1

Saturn 1



19. Using a method known as trigonometric parallax (which we will discuss in detail later in the
course) the Ancient Greeks had determined that the distance from the Earth to the Moon
was about 30 times Earth’s diameter (or 30DE). Since there is no empty space between the
sphere of the Moon and the sphere of Mercury, the minimum distance to Mercury should
be equal to the distance to the Moon. We can then find the maximum distance to Mercury
using the ratio we found in the table above. This maximum distance to Mercury will be equal
to the minimum distance to Venus, and so on. Complete the table below to determine the
minimum and maximum distance to each planet.

Planet Minimum Distance (in DE) Maximum Distance (in DE)

Moon 30 30

Mercury 30

Venus

Sun

Mars

Jupiter

Saturn

20. Ptolemy thought that the maximum distance to Saturn would be equal to the distance to the
Celestial Sphere. How many times greater is the diameter of the Celestial Sphere than the
diameter of Earth?

21. Use this information, and the fact that the volume of a sphere is directly proportional to the
cube of its diameter, to find how many times greater the volume of Celestial Sphere is than
the volume of the Earth (according to Ptolemy).


