
AST 120 Activity 22

Galileo on Falling Bodies

Name Full Partial None

By this point in our story the astronomical evidence for the Copernican (or, more correctly, Keplerian)
viewpoint has become overwhelming. But there is still the problem of the physics. Aristotle’s physics clearly
indicates that the Earth cannot move, and if it was somehow moving we would see all sorts of things that we
just don’t see. To finally overcome 1400 years of tradition we must find a new physics, one that will apply to
both the sublunary and celestial spheres. The great pioneer in this endeavor was Galileo, and we will begin
our discussion of Galileo’s new physics with the topic of bodies falling from rest.

1 Galileo’s Predecessors

1. Recall that Aristotle’s law of motion is

v =

{
kF/R, F > R
0, F ≤ R.

where v is the speed of the object’s motion, F is the force on the object, R is the resistance of the
medium, and k is just a proportionality constant. In the case of an object falling from rest the force
is just the object’s weight and the resistance is due to the air. So according to Aristotle a 3-lb ball
should fall a 1-lb ball.

(a) three times faster than

(b) one third as fast as

(c) at the same speed as

2. When Aristotle talks about the speed of an object, he really means what we would now call average
speed. For a falling object the average speed would be the distance the object falls divided by the
time it takes the object to fall. So if a 3-lb ball and a 1-lb ball are dropped from the same height and
the 3-lb ball hits the ground after 6 seconds, the 1-lb ball will hit the ground after
seconds.

3. Aristotle’s law of motion implies that an object will fall at a constant speed (since the force, and
presumably the resistance, are constant). So the fall of an object should be uniform. A precise
definition of uniform motion was given by John of Holland in 1369: uniform motion is motion in which
“a body traverses an equal space in every equal part of time.” So if objects fall in uniform motion then
an object that falls 10 feet in 5 seconds would fall feet in 3 seconds.
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4. Aristotle actually gives some indication in his writings that objects might increase their speeds as
they fall. By the 14th Century it was widely recognized that objects speed up continually as they
fall. Albert of Saxony, a scholar at Oxford University, suggested two ways this could occur: the speed
could increase proportional to the distance the object has fallen (v ∝ d) or the speed could increase
proportional to the time the object has been falling (v ∝ t).1 Note that we have introduced a new
conception of speed here: instantaneous speed. Instantaneous speed refers to the speed of an object
at a particular point in space, or a particular instant of time, rather than an average speed over some
interval. For example, suppose an object starts from rest and after one second its speed is 5 m/s. If
its speed is proportional to time then after 3 seconds its speed is m/s.

5. If an object is moving uniformly (at constant speed) we know how to determine the distance it has
traveled after any period of time. But what if it is moving so that its speed increases proportional to
the time? In 1377 Nicole Oresme, of the University of Paris, found a way to determine the distance in
this case as well. He came up with the idea of representing the speed at different times using a graph.
An example of the type of graph he used is shown below.
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The speed of this object at t = 1 s is .

6. Is the object represented by this graph moving such that v ∝ t? Explain how you can tell.

7. Oresme realized that the distance traveled by an objects is given by the area under the curve in the
speed versus time graph. This is fairly obvious for the case of uniform motion (for which the line in
the graph would be horizontal and the area under it would be simply vt). But he held that it would
also work for nonuniform motions. Determine the area under the curve in the graph above. Note: the
area of a triangle is one half the base times the height. Make sure to account for units.

1Albert ultimately rejected both of these possibilities because they could lead to infinite speeds.
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8. Using this idea Oresme proved the mean speed theorem, which states that an object moving such that
v ∝ t will travel a distance equal to the average of its initial and final speeds times the time of travel.
Determine the mean (or average) of the initial and final speeds for the object depicted in the graph
above.

9. Now use the mean speed theorem to find the distance traveled by the object depicted in the graph.
How does your answer compare with the area under the graph you found earlier?

10. Draw a dashed horizontal line in the graph above showing the value of the mean speed. In the space
below, explain how you can see from the graph that the area under this horizontal line is equal to the
area under the solid line. This is basically how Oresme proved the mean speed theorem.

11. Also in the 14th Century, William Heytesbury (another Oxford scholar - most of the important new
ideas on motion in the 14th Century came from two places: Oxford and Paris) provided a definition of
the concept of acceleration. Basically he stated that acceleration is the rate at which an object’s speed
changes. With this definition, we can see that motion with v ∝ t is really just motion with constant
acceleration, and the proportionality constant is a measure of the acceleration. So we can rewrite the
proportionality as an equation: v = at, where a is the acceleration of the object. If an object falls from
rest with constant acceleration of 3 m/s2, its speed after 5 seconds of falling will be .

12. Suppose an object starts from rest, so vi = 0. It experiences a constant acceleration a for a time t.
What is the object’s final speed vf? Note: give a symbolic answer in terms of a and t.

13. Now let’s try putting together Heytesbury’s idea of acceleration with Oresme’s mean speed theorem.
Note that the mean speed theorem can be written as: d = (vi + vf )t/2. Make sure you see how this
equation relates to the statement of the mean speed theorem given above. Substitute your expression
for vf from the previous question into the mean speed theorem formula to find the distance traveled
by the object (in terms of a and t).2

2This result too was known in the XIVth Century. It appears in a manuscript attributed to William Collingham of Oxford.
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14. So an object moving with a constant acceleration travels a distance which is proportional to the
.

(a) time

(b) square of the time

(c) square root of the time

(d) time cubed

2 Galileo’s Theory of Falling

Most of the key ideas for describing the motion of falling bodies were formulated in the 14th Century, but
the medieval Scholastics do not seem to have conducted experiments to see if these ideas actually fit any
motions that exist in nature. That work would await Galileo in the 17th Century. It is uncertain how much
Galileo was aware of the work of the 14th Century scholars at Oxford and Paris. In any case, he came to
many of the same conclusions they did and went well beyond their work. His ideas about motion were laid
out in a final form in his Discourses and Demonstrations Concerning Two New Sciences in 1638.

1. Galileo begins his discussion of falling bodies by attacking Aristotle’s views. He starts with a logical
argument. Suppose you drop an 1-lb stone and find it takes 10 seconds to fall to the ground. According
to Aristotle it should take the 10-lb stone only 1 second to fall to the ground. Now suppose we tie
these two stones together and drop them. It seems as though the slowly falling 1-lb stone will impede
the fall of the 10-lb stone. So the time of fall should be .

(a) less than 1 s

(b) exactly 1 s

(c) between 1 s and 10 s

(d) exactly 10 s

(e) more than 10 s

2. Now suppose instead we fuse the two stones together into a single 11-lb stone. How long will it take
this stone to fall to the ground, according to Aristotle’s physics?

(a) less than 1 s

(b) exactly 1 s

(c) between 1 s and 10 s

(d) exactly 10 s

(e) more than 10 s

3. There seems to be a logical flaw in Aristotle’s theory. Furthermore, Galileo argues that Aristotle’s
theory completely fails the test of experiment. Let’s test Aristotle’s idea ourselves. On your table you
should find a ball made of wood and a ball made of lead. Pick up both balls and get a sense of their
weights. Which one is heavier? Which one will fall faster? According to Aristotle, approximately how
much faster will the heavier ball fall (just estimate, you don’t have to determine this exactly)?
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4. Now drop both balls at the same time from the same height. Be careful to drop the balls simultaneously
and from exactly the same height above ground. Have another member of your group closely watch
the spot where the balls will land. Which ball lands first? Or do they land at the same time? How
does this result compare with Aristotle’s theory?

5. Galileo claimed that experiments dropping lead balls of different weights from a tower show that the
heavier weight hits the ground when the lighter weight is a “hands breadth” above the ground. So
there is a difference in the time of fall, but not so great a difference as Aristotle claimed. Galileo
claimed that this difference was due to the resistance of the air. Do your experimental results fit with
Galileo’s?

6. Having destroyed Aristotle’s theory of falling, Galileo begins searching for a new theory to replace it.
He first considers the various ways that an object might move. It was known since the 14th Century
that falling objects don’t have uniform motion, so Galileo next considers uniform acceleration. He
develops the theory of uniformly accelerated motion that we have already discussed above (specifically
v = at and d = (1/2)at2). Galileo didn’t use algebraic formulas like these. Instead, he thought in
terms of ratios. If an object starts from rest and moves with uniform acceleration, then if the object
has traveled a distance d1 at time t1 and a distance d2 at time t2 these values must be related by

(a) (d2/d1) = (t2/t1)

(b) (d2/d1) =
√
t2/t1

(c) (d2/d1) = (t2/t1)2

(d) (d2/d1) = (t1/t2)2

7. Once he had a clear mathematical description for uniformly accelerated motion, Galileo asks: are there
any motions in Nature that are like this? He speculates that falling objects might move with uniform
acceleration. To test this idea he wants to determine distances and times of fall, but the primitive
clocks of the day will not allow him to accurately time fast motions like those of a falling object.
So instead he proposes to study balls rolling down ramps to see if they exhibit this kind of motion.
To simulate Galileo’s experiments run the InclinedPlane program. The simulation shows a red ball
rolling down a brown inclined plane. Pause the simulation at t = 1 s, 2 s, and 3 s. Record the distance
the ball has traveled at each of these three times in the table below. Don’t worry if you can’t stop it
at just the right time - Galileo also had a lot of uncertainty in his time measurements. Also calculate
the ratios (d/d1) and (t/t1)2, where d1 is the distance at t1 = 1 s.

time (s) distance (m) d/d1 (t/t1)2

1 1 1
2
3

8. Does this data indicate that the ball rolled down the plane with a constant acceleration?
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9. Now pause the simulation, change the inclination of the plane to 5◦, and click Initialize. Play the
simulation and fill in the table below.

time (s) distance (m) d/d1 (t/t1)2

1 1 1
2
3
4

10. Does this data indicate that the ball rolled down the plane with a constant acceleration?

11. How does the value of a for the shallower plane compare to the value of a for the steeper plane?

12. Galileo felt that his experiments proved that balls rolling down inclined planes move with a constant
acceleration regardless of the angle of tilt (although the actual value of the acceleration depends on
the tilt). He also found that for a given tilt, the value of the acceleration did not seem to depend on
the weight of the ball. He then imagined what would happen if the plane was tilted to 90◦, so that it
was vertical. Based on the results of the inclined plane experiment how do you think the ball would
move as it fell?

13. After all this Galileo comes to the following conclusion: all objects fall with the same constant ac-
celeration. He recognized, however, that this would imply that any two objects dropped from the
same height should hit the ground at the same time. How, then, to account for the “hands breadth”
difference mentioned above? Galileo blames this on air resistance. He has something very interesting
to say about this:

As to speed, the greater this is, the greater will be the opposition made to it by the air,
which will also impede bodies the more, the less heavy they are. Thus the falling heavy
thing ought to go on accelerating in the squared ratio of the duration of its motion [i.e.
d = (1/2)at2]; yet, however heavy the moveable may be, when it falls through very great
heights the impediment of air will take away the power of increasing its speed further, and
will reduce it to uniform and equable motion [i.e. d = vt]. And this equilibration will occur
more quickly and at lesser heights as the moveable shall be less heavy.

According to Galileo’s statement, which object will be more greatly affected by air resistance?

(a) a cannonball

(b) a small rock

(c) a feather

14. According to the quote from Galileo, if we let an object fall long enough it will actually stop accelerating
and start moving with constant speed. This speed is now referred to as the terminal speed. Which
object will reach its terminal speed the fastest?

(a) a cannonball

(b) a small rock

(c) a feather
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15. Which object will have the smallest terminal speed?

(a) a cannonball

(b) a small rock

(c) a feather

16. Using Galileo’s idea about air resistance, explain why a heavy object will land a little bit before a light
object if both are dropped from the same height.

It is interesting to note that Galileo finds that in a certain situation an object can fall with a constant
speed, but only after it has accelerated to its terminal speed. In what other circumstances might an object
move with a constant speed? We’ll explore that next time.
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