
AST 120 Activity 10

Ptolemy’s Syntaxis (or Almagest)

Name Full Partial None

1. After Apollonius’ deferent-epicycle model, the next major innovation in Ancient Greek astronomy
seems to have been introduced by Hipparchos in the 2nd Century BC. Hipparchos was trying to model
the motion of the Sun and he wanted to account for the Sun’s varying speed as it moves along the
ecliptic. He found that he could do this without upsetting the doctrine of uniform circular motion.
All he had to do was move the center of the Sun’s circular orbit away from the Earth. This device
is known as an eccentric (which basically just means off-center). To see how the eccentric works, run
the Eccentric program. The simulation shows the Sun moving in a circular orbit centered on the
eccentric point (labeled E). The Earth is represented by a blue dot. Also shown is the motion of the
Sun through the sky as seen from Earth. Does the Sun move at a constant speed along its deferent?

2. Does the line connecting the Earth and the Sun change at a constant rate? In other words, is the
apparent motion of the Sun as seen from the Earth uniform?

3. When is the Sun moving fastest and when is it moving slowest across the sky (as seen from the Earth)?
You may want to pay attention to the sky view for this question.

(a) It appears to move fastest when it is farthest from Earth and slowest when it is closest to Earth.

(b) It appears to move fastest when it is closest to Earth and slowest when it is farthest from Earth.

(c) It appears to move at the same rate at all times.

(d) It moves fastest when it is on the line through the Earth and the eccentric point, and slowest
when it is perpendicular to this line.

4. We know that the Sun travels fastest in winter (in early January when the sun is in Sagittarius c- see
Activity 6) and slowest in summer (in early July when the sun is in Gemini ^). If you were to travel
from the Earth to the Sun’s eccentric point, you should travel in the direction of which constellation?
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5. This simulation greatly exaggerates the Sun’s eccentricity (the distance from the Earth to the sun’s
eccentric point, in units of the Earth-Sun distance1). So let’s try to calculate the actual eccentricity
that the Sun should have. If the sun’s average angular speed through the stars is ωavg then its maximum
angular speed is ωmax = ωavg/(1 − ε), where ε is the distance from the earth to the eccentric point
(center of the sun’s orbit) divided by the radius of the sun’s orbit. Similarly ωmin = ωavg/(1 + ε). So
we find that

ωmax(1 − ε) = ωmin(1 + ε).

Solve this equation, symbolically, for ε.

6. From observation we know that the sun’s maximum angular speed is 1.027◦ per day (when the sun is
in Sagittarius c) and it’s minimum speed is 0.9442◦ per day (when the sun is in Gemini ^). Calculate
ε for the sun.

7. Input this value for the eccentricity into the simulation and then run the simulation. Watch the
sky view. Can you tell that the sun is changing speeds? Is the eccentricity of the sun’s orbit easily
noticeable?

8. Is an eccentric circular orbit the only way to achieve this effect of the Sun’s varying speed? Or
could we do the same thing with the epicycle we studied in the previous activity? Return to the
SuperiorPtolemaic simulation. Make sure the Use Simplified Orbits box is checked. In the Select
Planet menu, select User Defined. In the box that appears, uncheck the Link Planet to Sun box. Set
Deferent ω to 1 and Epicycle ω to 0 (so the planet remains in a fixed position on its epicycle). Click
Play and watch the simulation. Describe the resulting orbit below.

1The Earth-Sun distance is known as an Astronomical Unit (AU). The simulation gives the eccentricity in AU.
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9. So do we truly need to use an eccentric, or could we use an epicycle to achieve the effect of the Sun’s
varying speed? Explain your answer.

10. Which of these two methods (eccentric or epicycle) would you choose for reproducing the Sun’s varying
speed along the Ecliptic? Explain the reasons for your answer.

11. Quit Eccentric. Hipparchos’ eccentric seems to account fairly well for the motion of the Sun. It can
actually help out with the planets as well. But first we need to identify what the problem is before we
can see how the eccentric can help solve it. Run the EpicycleEccentric program. This simulation
shows a superior planet moving in a deferent-epicycle orbit, but the center of the deferent can be shifted
away from Earth as in the Eccentric program we just used. For now, though, set the eccentricity to
zero and play the simulation. Pay close attention to the retrograde loops of the planet. Look carefully
at both the size and spacing of the loops. Which of the following best describes what you see?

(a) The loops are all the same size and the angle between one loop and the next is always the same.

(b) The loops are all the same size but the angle between one loop and the next changes.

(c) The loops are different sizes but the angle between one loop and the next is always the same.

(d) The loops are different sizes and the angle between one loop and the next changes.

12. Does this fit with what we saw in Stellarium? Were the retrograde arcs of Mars and the other planets
regular in this way, or did they vary from one retrograde to the next?

13. The Ancient Greek astronomers were aware that the retrograde loops look different each time, and
that their spacing was not uniform. Shifting the center of the planet’s deferent away from Earth can
help us get closer to solving this problem. Change the eccentricity to 0.3 and run the simulation again.
From the perspective above the plane of the ecliptic it is clear that .

(a) the loops are all the same size and evenly spaced

(b) the loops are all the same size but not evenly spaced

(c) the loops are not the same size but they are evenly spaced

(d) the loops are not the same size, nor are they evenly spaced
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14. But how do these loops appear as seen from Earth? To figure this out you can watch the simulation,
but you may also want to think about the following analogy: suppose you see two trees off in the
distance. If you get closer to the trees will the trees appear bigger or smaller? Will the trees appear
closer together or farther apart? Since the retrograde loops of Mars in this model are not centered on
the Earth, some of them are closer to the Earth and some are farther away. You can conclude that

.

(a) the loops closer to Earth will appear larger and more closely spaced

(b) the loops closer to Earth will appear smaller and more closely spaced

(c) the loops closer to Earth will appear larger and more widely spaced

(d) the loops closer to Earth will appear smaller and more widely spaced

15. Quit EpicycleEccentric. To really match the observed motion of the planets the Ancient Greeks
added one more piece to their model: the equant. As far as we know the equant was invented by
Claudius Ptolemy in the 2nd Century AD. Ptolemy put all these pieces (epicycle, eccentric, equant)
together (along with a few other wrinkles for Mercury and the Moon) to compile what was essentially
the final system of Ancient Greek astronomy. This system, described in Ptolemy’s Mathematical
Syntaxis (more commonly known as the Almagest), dominated astronomy for the next 1400 years.
Ultimately, it was the equant that would prove the demise of Ptolemy’s system. To see what the
equant does, run the Equant program. At first glance the simulation looks just like the one for the
eccentric. But there is a new point labeled (Q) and a new circle. Watch the simulation carefully. Does
the planet move along its deferent at a constant speed?

16. Which of the following statements seems to be true for this model?

(a) The planet moves fastest along its deferent when it is closest to Earth (and thus farthest from Q).

(b) The planet moves fastest along its deferent when it is farthest from Earth (and thus closest to Q).

(c) The planet moves along its deferent at a constant speed.

17. Now pay close attention to the cyan line that runs from the point Q toward the planet. Does this line
change its angle at a constant rate?

18. This is the key idea of the equant. The planet moves at a constant rate as seen from the equant point
Q. It does not move at a constant rate on its deferent (i.e. as seen from the eccentric point E). Nor
does it move at a constant rate as seen from Earth. Note that E is halfway between Earth and Q (this
is called the bisection of the eccentricity). In the model with the eccentric and the equant the planet,
as seen from Earth, appears to move when it is closest to Earth.

(a) even faster than it does in the eccentric-only model

(b) slower than it does in the eccentric-only model (but still faster than when it is far from Earth)

(c) at the same speed as in the eccentric-only model

19. Now quit Equant. To see how Ptolemy put all of these pieces together to model the motion of Mars,
run SuperiorPtolemaic again. Uncheck the box to Use Simplified Orbits. This shows Ptolemy’s full
orbit for Mars with an eccentric, equant, and epicycle. Let the simulation run for a while and pay close
attention to the retrograde loops of Mars. Are they all the same size?
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20. Are the loops evenly spaced?

21. Is the retrograde motion (and corresponding changes in brightness) still properly correlated with the
motion of the Sun?

22. Now let’s try to determine how Ptolemy set the periods of the motions along the deferent and epicycle.
Check the box to Use Simplified Orbits again. Run the program and pay close attention to where the
planet is on its epicycle when it undergoes retrograde motion. When it is in the middle of retrograde
the planet is always on the part of its epicycle . . .

(a) . . . that intersects the deferent to the west of the epicycle’s center.

(b) . . . toward the center of the deferent.

(c) . . . away from the center of the deferent.

(d) . . . that intersects the deferent to the east fo the epicycle’s center.

23. The last question shows that the period between retrogrades will be the period of the epicycle’s motion
in relation to the deferent. [If you aren’t sure what I mean by this, ask.] The period between retrogrades
is what we have called the planet’s period.

24. The zodiacal period of the planet is related to the period of what motion (measured relative to the
stars)?

25. Quit SuperiorPtolemaic and run InferiorPtolemaic. Carefully watch the motion of the planet.
Would your answers to the last three questions be different for an inferior planet (Venus, Mercury)
than they were for the superior planets (Mars, Jupiter, Saturn)? If so, how?

26. Now you can use Table 1.1 (page 19) to complete the second and third columns (but not the fourth
column yet) of the table below. Note that Tdef is the period of the planet’s deferent motion (measured
relative to the stars), while Terd is the period of the planet’s epicycle motion measured relative to the
deferent.

Planet Tdef (years) Terd (years) Tepi (years)
Mercury
Venus
Mars

Jupiter
Saturn
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27. Ptolemy always thought of the period of the epicycle motion in relation to the deferent. But it will be
convenient for us to also consider the period of the epicycle motion as measured relative to the stars.
To do this we make use of the forumla:2

1

Tepi
=

1

Tdef
+

1

Terd
.

Use this formula to complete that last column of the table above.

28. We saw earlier that for a superior planet the epicycle motion was linked to the Sun, while for an
inferior planet the deferent motion is linked to the Sun. Explain how these links between the motion
of a planet and that of the Sun are apparent in the table above.

29. Now we have a pretty good idea of how Ptolemy constructed orbits for the planets, and how he was
able to set their periods, etc, from observational data. But so far we have been looking at 2D models
in which the motion of the planet is confined to the plane of the ecliptic (with ecliptic latitude 0◦). We
know from Stellarium that the planets do not say on the ecliptic, but can be found above or below it.
Think about Ptolemy’s theory and state two possible ways that Ptolemy could account for variations
in a planet’s ecliptic latitude. [If you need a hint, ask.]

30. There is just one last thing we need to explore in Ptolemy’s theory of the planets. How does Ptolemy
determine the sizes of the epicycles and deferents for each planet? In particular, we are interested to see
whether the actual size of the epicycle and deferent are important, or is it only the relative size of the
two circles that is important? Play around with both SuperiorPtolemaic and InferiorPtolemaic.
Select User Defined from the Select Planet menu and change the values of the deferent and epicycle
radii. Note that the deferent radius is set to 5 and the epicycle radius to 3.3 (Ptolemy’s values for
Mars). Change the deferent radius to 10 and run the simulation. Does changing the size of the deferent
alter the motions of Mars as seen from Earth?

31. Now set the deferent radius back to 5 and change the epicycle radius to 4. Run the simulation. Does
changing the size of the epicycle alter the motions of Mars as seen from Earth?

32. Now set the deferent radius to 10 and the epicycle radius to 6.6. Note that each of these values is
double Ptolemy’s value for Mars, so we have changed the size of BOTH circles by the same factor.
Run the simulation. If both circles are increased (or decreased) by the same factor, does this alter the
motion of Mars as seen from Earth?

2This formula is derived from the fact that the angular velocity of the planet along its epicycle relative to the deferent is
equal to its angular velocity along its epicycle relative to the stars minus the angular velocity of the epicycle along the deferent
(relative to the stars).
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