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The Statistical Interpretation of  
Entropy: An Activity
Todd Timberlake, Berry College, Mount Berry, GA

The second law of thermodynamics, which states that 
the entropy of an isolated macroscopic system can 
increase but will not decrease, is a cornerstone of 

modern physics. Ludwig Boltzmann argued that the second 
law arises from the motion of the atoms that compose the 
system. Boltzmann’s statistical mechanics provides deep 
insight into the functioning of the second law and also pro-
vided evidence for the existence of atoms at a time when 
many scientists (like Ernst Mach and Wilhelm Ostwald) were 
skeptical.1 

Occasionally the fundamental concepts of statistical me-
chanics are taught in the introductory calculus-based physics 
course.2 In courses for non-science majors, the concept of 
entropy may be introduced as a measure of “disorder,”3 but 
typically no attempt is made to provide a real definition of 
entropy or a statistical explanation of the second law. This 
paper describes an activity that presents the statistical ap-
proach to entropy and irreversibility in a way that is accessible 
to non-science majors and high school students. The activity 
uses highly simplified models that allow students to explore 
important concepts without sophisticated mathematics. The 
activity also introduces students to the historical development 
of these ideas.  

This activity occupies two and a half to three hours of class 
time and requires some knowledge of Newtonian mechan-
ics and energy. The computer simulations described in the 
article,4 as well as worksheets to guide students through the 
activity, are available for free as part of the Open Source Phys-
ics collection on the ComPADRE digital library.5

Multiplicity, probability, and entropy
To understand Boltzmann’s approach to entropy, we must 

first introduce two ways of describing the state of a system:  
the microstate and the macrostate. A microstate specifies all 
possible information about the state of the system, while a 
macrostate gives only coarse-grained information about the 
system. In general, a macrostate will contain many micro-
states. A simple way to introduce students to these terms is 
to consider a model system consisting of a row of coins. Each 
coin is fixed in position but can show either heads or tails.6  
If we state for each coin whether it is showing heads or tails, 
then we have specified the microstate of the system. One way 
to specify a macrostate for this system is to give only the total 
number of heads and tails. This macrostate tells us how the 
different components of the system are distributed among 
their possible states, but it does not provide information about 
the specific state of any component.

Students easily can write down all of the possible micro-
states for systems of two, three, and four coins. They can then 

determine the number of microstates that correspond to each 
of the possible macrostates, a quantity known as the multiplic-
ity of the macrostate and symbolized by V.  For example, a 
system of two coins has four microstates: HH, HT, TH, and 
TT.  Two of these microstates corresponds to the macrostate 
(1H,1T), so the multiplicity of this macrostate is V(1H,1T) 
= 2.  Similarly V(2H,0T) = 1, etc. As students work their way 
up to a system of four coins, they will see that the macrostates 
with roughly equal numbers of heads and tails (macrostates 
near equilibrium) have the greatest multiplicities, while 
macrostates that have all heads or all tails have the smallest 
multiplicities. The multiplicities are given by the binomial 
coefficients and, by arranging the multiplicities for the cases of 
two, three, and four coins in the proper pattern, students can 
be led to recognize (or remember) Pascal’s triangle.  Once they 
see the pattern they can extend the triangle to determine the 
multiplicities for systems with larger numbers of coins.

What is the probability of choosing a microstate associated 
with a given macrostate if we select the microstate at random?  
This probability can be computed by dividing the multiplicity 
of the macrostate by the total number of possible microstates.  
Since the macrostates at or near equilibrium have the largest 
multiplicities, they will be the most probable.  In a system of 
10 coins, the probability of choosing a microstate in one of the 
five macrostates closest to equilibrium (3-7 heads) is about 
89%, while the probability of choosing a microstate in one of 
the other six macrostates is only 11%.

After they have examined the multiplicities and prob-
abilities of a few macrostates, students can be introduced to 
Boltzmann’s definition of entropy:

S = kB lnV,

where S is the entropy of a macrostate and kB is a proportion-
ality constant.7 Students can compute the entropy for various 
macrostates to see that macrostates with greater multiplicity 
have higher entropy. 

Flipping coins
Suppose we start with a row of 20 heads-up coins. What 

will happen to the macrostate of the system if we begin choos-
ing coins at random and flipping them over? Will the system 
bounce around among the various macrostates, or will it tend 
toward one particular macrostate? What will happen to the 
entropy of the system? To explore this behavior we can roll 
a 20-sided die8 and then flip over the coin that corresponds 
to the result of the die roll. If we repeat this procedure for 80 
rolls of the die, we will get a result like that shown by the red 
squares in Fig. 1. It is clear that the system moves generally 
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qualitatively the same as those of the coin model, showing the 
approach to equilibrium and fluctuations away from equilib-
rium. Increasing the number of particles in the gas, students 
will find that the gas approaches equilibrium steadily with no 
noticeable fluctuations. By analogy with the coin model, stu-
dents can conclude that the entropy of this ideal gas increases 
as it approaches the equilibrium state.

It is not hard to understand why the behavior of the gas 
should mimic that of the coin model. Let each coin represent 
a particle, with heads indicating the particle is on the left side 
of the box and tails indicating it is on the right side. A particle 
moving from one side of the box to the other then corre-
sponds to flipping over a coin. Particles pass from side to side 
at random (because of their random initial conditions), just 
as the coins to be flipped are chosen by a random die roll. In 
spite of these similarities, it is important to point out the dif-
ferences between an ideal gas and the simple coin model. The 

toward equilibrium (10H, 10T), but it experiences significant 
fluctuations away from equilibrium. This behavior is not 
hard to understand. Let’s say the system is in the macrostate 
(17H,3T). When we roll the die there is a 17/20 chance that 
the result will lead to a macrostate that is closer to equilibrium 
(16H,4T) and only a 3/20 chance that it will lead to a macro-
state farther from equilibrium (18H,2T). So the system will 
tend toward the equilibrium state. But moving away from 
equilibrium, though unlikely, is not impossible, and we should 
expect to see fluctuations away from equilibrium as shown in 
Fig. 1. If we average the data from six experiments (shown by 
the blue triangles in Fig. 1), we find that the fluctuations are 
smaller.

Students can use a computer simulation to explore the 
behavior of this model with a larger number of coins. The 
simulation provides a visual display of the state of the system 
as well as graphs of both the number of heads/tails [Fig. 2(a)] 
and the entropy [Fig. 2(b)] as a function of the number of coin 
flips. If students run the simulation with an increasing num-
ber of coins, they will quickly see that in all cases the system 
approaches the equilibrium state, which is also the state of 
maximum entropy. They will also observe that the relative size 
of the fluctuations (the size of the fluctuations as a fraction 
of the total number of coins) decreases as they use more and 
more coins. Students can then be led to see that this behavior 
is predicted by their multiplicity calculations, which show that 
as the number of coins is increased the probability becomes 
concentrated into a smaller fraction of the macrostates near 
equilibrium.

From coins to ideal gases
After their detailed investigation of the coin model stu-

dents are ready to explore a more realistic system: an ideal 
gas in a box. Figure 3(a) shows the output from a simulation 
of a classical ideal gas initially confined to the left side of a 
box. The graph shows the number of particles on the left and 
right sides of the box as a function of time. The results are 
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Fig. 1.  Data from the coin flip experiment. The red squares show 
data generated by a single group with 20 coins, while the blue 
triangles show the average for six groups.
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Fig. 2(a). Results of a coin flip simulation with 
200 coins. The graph shows the number of 
heads (red) and tails (blue) vs the number of 
coin flips.

Fig. 2(b). Graph of entropy vs number of coin 
flips for the simulation with 200 coins.  The 
entropy approaches the maximum value of 
Smax = lnV(100H,100T) = ln(200!/(100!)2) < 
135.75.
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increases. Note that here the temperature shown is really just a 
measure of the average kinetic energy of the particles on each 
side of the box because the ideal gases overlap without inter-
acting and thus never reach a final Maxwell-Boltzmann dis-
tribution.  In real gases the molecules interact.  Faster-moving 
molecules are more likely to transfer energy to slow-moving 
molecules than vice versa, so real gases eventually reach a 
Maxwell-Boltzmann distribution at an intermediate tempera-
ture.  The entropy of real gases would increase because energy 
gets spread and shared more evenly among the molecules 
(and among the various degrees of freedom, internal and ex-
ternal, of each molecule).10  For the ideal gases in the simula-
tions, the entropy increases solely as a result of the spreading 
of energy as each gas expands.

All of these examples illustrate that the second law of ther-
modynamics is a probabilistic law. Indeed, violations of the 
second law are possible, as shown by the fluctuations away 
from equilibrium in the simulations. But motion toward 
equilibrium, and thus toward higher entropy, is much more 
likely.  As the number of molecules in the gas is increased, the 
probability that the gas will follow the second law becomes 
overwhelming. As Boltzmann put it, the second law “means 
nothing else than that … the system of bodies goes from a 
more improbable to a more probable state.”11

 Exploring historical objections
In 1872 Boltzmann used a statistical analysis of the motion 

of gas molecules to derive his “H-theorem,” which indicated 
that the reversible dynamics of an ideal gas produces an ir-
reversible increase in the entropy of the gas.  The H-theorem 
implied that the second law was absolute: entropy must always 
increase.  What led Boltzmann to abandon this absolute view 
of the second law in favor of the probabilistic view presented 
above?

Doubts about the absolute nature of the second law had 
been expressed even before 1872. James Clerk Maxwell, in an 
1869 letter to his friend P. G. Tait, expressed concern about 
possible violations of the second law. He imagined a gas 
confined to a box and monitored by an entity (later known 
as Maxwell’s Demon12) that would allow only fast-moving 
molecules to pass from the right side to the left side of the box 
and only slow-moving molecules to pass the other way. If the 
gas is initially in equilibrium, then the Demon will cause the 
left side to become hotter while the right side gets colder. This 
would be a clear violation of the second law, except that the 
gas is no longer an isolated system (because it interacts with 
the Demon). Maxwell thought that the natural motion of the 
molecules might coincidentally produce the same effects as 
the Demon, and therefore true violations of the second law 
might be possible (though presumably rare).  

Students can explore the effects of Maxwell’s Demon us-
ing a modified version of the ideal gas simulation described 
above. The simulation begins with a mixture of hot and cold 
ideal gases spread throughout a box, but the actions of the 
Demon cluster the faster particles on the left and the slower 

microstate of an ideal gas is given by stating, for each particle, 
the exact position and velocity of that particle rather than just 
stating which side of the box it occupies. The entropy of an 
ideal gas depends on the temperature and volume of the gas 
and therefore cannot be calculated with the method used for 
the coin model, but the behavior of the two systems is similar 
since the entropy of a gas at constant temperature increases 
with increasing volume.9

This behavior is also connected to heating. Another simu-
lation shows a box that initially has a cold ideal gas on the left 
side and a hot gas on the right side. The particles of each gas 
have randomly assigned initial positions (within their respec-
tive sides of the box) and random initial velocities distributed 
according to the Maxwell-Boltzmann distribution. When 
the simulation is run, each gas expands to fill the box, so that 
the initially cold side gets hotter and the initially hot side gets 
cooler [as shown in Fig. 3(b)], while the entropy of the system 
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Fig. 3(a).  Simulation of a gas of 200 particles, 
initially confined to the left side of a box, 
showing the number of particles on the left 
(red) and right (blue) sides as a function of 
time. 

Fig. 3(b). Simulation of mixing hot and cold 
gases showing the temperature of the gas on 
the left (red) and right (blue) sides of the box 
as a function of time. Initially the hot gas is 
confined to the right side while the cold gas 
is confined to the left.
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particles on the right, making one side get steadily hotter 
while the other side gets colder. The Demon can be turned 
off so that students can see that the system quickly returns 
to equilibrium. Note that the Demon in the simulation is not 
constrained by the laws of physics. If the Demon must obey 
the laws of physics, then it could take millions of years to gen-
erate a noticeable temperature difference.13

In 1876 Josef Loschmidt raised another famous objection 
that casts doubt not only on the absolute nature of the sec-
ond law but also on its statistical interpretation. He pointed 
out that for any motion allowed by Newton’s laws, the time-
reversed motion must also be allowed.  So for every set of mo-
tions that cause the entropy of a gas to increase, there must be 
another equally valid set that causes the entropy of the gas to 
decrease. Students can explore Loschmidt’s argument using 
the ideal gas simulations described previously, each of which 
includes a button that reverses the velocities of all particles. If 
students run the simulation until it reaches equilibrium, re-
verse the velocities, and run the simulation again, the resulting 
time-reversed motion will violate the second law.

Boltzmann developed his probabilistic interpretation of 
the second law partially in response to these criticisms. In the 
1877 papers in which he introduced his statistical approach 
to entropy, he admitted that violations of the second law were 
possible, but he claimed that such violations would be rare and 
brief. It seems intuitively unlikely that the natural motion of 
gas molecules would mimic the effects of Maxwell’s Demon.  
Boltzmann claimed that the time-reversed behavior pointed 
out by Loschmidt also would be unlikely to occur, since 
the system would rarely evolve into a state like the velocity-
reversed states described above. Furthermore, he claimed that 
any violations of the second law would only last for a short 
time before the entropy would start increasing again.  This 
last point can be illustrated using the computer simulations 
discussed above. The decrease in entropy that occurs for the 
time-reversed gas lasts only until the gas reaches its initial 
condition. After that the entropy of the gas starts to increase 
again, so the violation of the second law is only temporary.

Conclusion
Boltzmann’s statistical approach to entropy provides deep 

insight into the behavior of macroscopic systems. Moreover 
his interpretation of the second law as a probabilistic law in-
troduced a radical new view of the nature of scientific laws.  
The activity described above is intended to make these im-
portant concepts accessible to high school students and non-
science majors in college. Although the activity makes use of 
models that are highly simplified and lack many features of 
real gases, it can help students to understand the statistical in-
terpretation of entropy and irreversibility while requiring only 
a minimal background in mathematics and physics. Computer 
simulations and worksheets for this activity are available for 
free in the Open Source Physics collection at www.compadre.
org/osp/.5
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