Lyapunov Exponents

Quantifying Chaotic Motion
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e This plot shows the natural log of the distance between
two initially close trajectories as a function of the number
of map iterations.

* The initial points for the two trajectories were (0.5,0) and
(0.50000001,0).

* The straight line with positive slope for n<17 shows
exponential divergence. This divergence levels off when
the trajectories reach the phase space boundaries.

Divergence of Trajectories Close
to a Hyperbolic Point

Consider a trajectory on the unstable manifold (H_) of
a hyperbolic point (H).
Each time we apply the map this point moves a factor

of |a| farther from H, where « is the eigenvalue of the
stability matrix of H with magnitude greater than one.

After N iterations of the map, the distance of the point
from His dy = do|c|”, where d is the initial

distance of the point from H.

Clearly the trajectory diverges exponentially from H
as N is increased.

Lyapunov Exponents for a Stable
Fixed Point

* For a stable fixed point the eigenvalues of

the stability matrix are of the form e*1f. So
the Lyapunov exponents are zero.

* So non-zero Lyapunov exponents (one
positive, one negative) imply that the orbit
is unstable. Zero Lyapunov exponents
imply that the orbit is stable.

Lyapunov Exponent for a
Hyperbolic Point

We define the Lyapunov exponent to be
A=In|a|, so that AN-

. . = dpe .
Note that since |0cfvls greater than one, A is a
positive number.

We can also calculate a Lyapunov exponent
for the other eigenvalue (1/at|). This
Lyapunov exponent will be the negative of
the first Lyapunov exponent.

For Hamiltonian (area-preserving) systems,
the sum of the two Lyapunov exponents
must be zero.

Lyapunov Exponents for the
Standard Map

 Calculate the Lyapunov exponents for the
fixed point of the Standard Map at (0.5,0.5)
for K=1.5 and K=7.



Lyapunov Exponents for a
Periodic Trajectory

To calculate the Lyapunov exponent for,
say, a period-3 orbit you must first find the 3
points in the orbit: z(), z1, z7.

The calculate the tangent map for each one
of these points: P, Py, P».

Find the eigenvalue o of (P Py Pg). The
Lyapunov exponent is A = In(a)/3.

In general A = In(Eigenvalue of Py ... Pg)/
N.

We must then define a new tangent map for the
point z1, which we will call Py.

After two iterations of the map the point is at zy =
zg + Py z1 =279 + Py Py 2.

After N iterations the point will be at IN =
zo+ (PN ... P1 Po) 2.

The Lyapunov exponents of the trajectory can be

found by taking the limit as N approaches infinity
of the natural log of the eigenvalues of (Py ... Py

Pg), divided by N.
Nonzero values indicate exponentially diverging

trajectories (chaos). Zero values indicate stable
motion.

Lyapunov Exponents for Any
Trajectory

We don’t have to be near a fixed point to find a
Lyapunov exponent. The Lyapunov exponent
measures the exponential divergence of nearby
trajectories using any trajectory as the origin.

Consider a (non-periodic) point zg = (0, I).

We can define a tangent map for that point which
we will call Pg.

After one iteration of the map, the point will be at
z1 =20 + Po 2.

Numerical Determination of A

Finding the Lyapunov exponents for a non-
periodic trajectory can be difficult.

The tangent maps must be accurately
calculated for each point on the trajectory.

N must be large enough that the eigenvalues
of (PN ... Py Pg) divided by N converge to

a single value.

This can be done numerically, but it is not
an easy task.

Measure of Chaos

The largest Lyapunov exponent serves as a
measure of chaos in a region of phase
space.

If a trajectory has a Lyapunov exponent A,

nearby trajectories diverge from it as eMN,
This is true in the limit of large N even if
the point is not on the unstable manifold of
a fixed point.

This means that for larger A, nearby
trajectories diverge more rapidly and thus
the region of phase space near the base
trajectory is “more chaotic”.



