
PHY 402 - Classical Mechanics II
Computational Project #3
Wes Taylor
For this, our final computational project I will take you on a tour of classical mechanics using as our guide, the Berry Map.
(insert stadium-like applause)
The Berry Map is defined as:
qn+1  = qn  - sin(2prn+1 ), Mod 1
rn+1  = rn  + kÅÅÅÅÅÅÅÅ2 p sin(2pqn ), Mod 1
where k is the perturbation parameter

To get an idea of what this looks like, we will create a few section surfaces using different perturbation parameters.
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f@x_D := N@8Mod@x@@1DD - Sin@2 *Pi* HMod@x@@2DD + Hkê H2* PiLL * Sin@2* Pi* x@@1DDD, 1DLD, 1D,
Mod@x@@2DD + Hkê H2* PiLL * Sin@2 * Pi* x@@1DDD, 1D<D

k = 0.2;
MapData = Flatten@Table@

Join@NestList@f, 80, 0.05* i<, 400D, NestList@f, 80.5, 0.05* i<, 400DD, 8i, 0, 20<D, 1D;
ListPlot@MapData, PlotStyle Ø PointSize@0.004D, PlotRange Ø 880, 1<, 80, 1<<,
Frame Ø True, Axes Ø FalseD
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This is the map for k = 0.2.  Now, here's k = 0.25
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Between the first two sections you can easily see the most distinctive features of the map including the stable period one
trajectory at (0.5,0.5), resonance state centered around (0,0) as well as other resonances throughout,  four distinctive KAM
tori, early signs of chaotic trajectories throughout, and, most interestingly, humps that alternate, centered on the stable period-
one trajectories at (0.5,0.25),  (0.5,0.75),  (0,0.25) and (0,0.75).  These humps are about the only "physical feature" that we
have not witnessed with the Standard Map.  We will come back to these humps later.

Back to the different perturbations, here is k = 0.3.
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Notice how quickly the different KAM tori broke down into chaos.  It appears here that there is only one KAM torus left, but,
if you were to open the file WTPerturbationMovie on the desktop and animate the graphics, you would see that this is in fact
two different tori which seem to come together and separate just before they break down.  For your information, the movie
begins with k=0, and runs through k=1.25 in increments of 0.01.  From analyzing the map, it appears as if these last KAM
tori are destroyed around k = 0.37.  Since they are the last to be destroyed, we can assume that these are our Golden Tori for
which their winding number is the most irrational number, the Golden Mean.  

Note:  I say that they are the Golden Tori, instead of the Golden Torus, because it appears that these two tori that kind of
weave towards and away from each other break at the same time, leading me to believe that there is more than one torus with
the Golden Mean for its winding number.

For a quick comparison, here is a plot of the Standard Map where k = 0.8,
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and here is the Berry Map for k = 0.8.
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From this we see that not only does the Berry Map have those strange humps, but it also goes towards hard chaos much
quicker than does the Standard Map.

Since we know the different resonances and KAM tori are destroyed rather quickly, let's look at which values of k cause
global and hard chaos.

At k = 0.38, the last KAM tori have been destroyed and we have global chaos.
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The interesting thing is, however, that at this point, certain trajectories are not allowed to cross the area where the KAM once
stood.  For example, here are the plots of two single trajectories, one located closer to the middle,  between where the tori
where, and the other, outside the tori location.

k = .38;
MapData = NestList@f, 80.2, 0.2<, 10000D;
ListPlot@MapData, PlotStyle Ø PointSize@0.0004D, PlotRange Ø 880, 1<, 80, 1<<D
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It is not until around k = 0.55 that a single trajectory is able to cross the phase space from top to bottom and left to right
without any blockages.
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Now, for hard chaos.  This one is much harder to determine from the plots.  If you go back and watch the movie again you
can see what appear to be two resonance states around the fixed points in the middle of the humps that seem to "beat" rather
than be destroyed as  the perturbation is increased.   Despite  this apparent  illusion, it  would seem that hard chaos begins
around k = 0.92.
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With the global chaos discussion above, we looked at two different chaotic trajectories.  Let's now see if we can find some
KAM, resonance, or periodic trajectories.
Here is a KAM trajectory created with the intial starting point of (0.1,0.14) at k = 0.3.
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This is the one of the two main resonance trajectories created at k = 0.05 starting at (0,0.5)
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And, of course, a boring look at the trajectory of a fixed point
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Wohoo!

One major characteristic of Poincare Sections is that they preserve area.  Let's first just look graphically to see if our map will
follow this characteristic.  We'll start with 5000 points located in a box that ranges in q from 0.4 - 0.6, and r from 0 - 0.2.
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MapData = Table@8Random@Real, 80.4, 0.6<D, Random@Real, 80, 0.2<D<, 8i, 0, 5000<D;
ListPlot@MapData, PlotStyle Ø PointSize@0.0004D, PlotRange Ø 880, 1<, 80, 1<<D

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Now, here's how it looks after 1 iteration.
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k = 0.6; MapData =
Table@Nest@f, 8Random@Real, 80.4, 0.6<D, Random@Real, 80, 0.2<D<, 1D, 8i, 0, 5000<D;
ListPlot@MapData, PlotStyle Ø PointSize@0.0004D, PlotRange Ø 880, 1<, 80, 1<<D
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It definitely looks as if it could be preserving area.  Let's watch for a few more iterations.
After 3
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5...
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and finally, 10 iterations.
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It is hard to tell exactly from the plots if our map is indeed area preserving, so we will have to go to the math.  For our map to
be area preserving, the determinant of the Jacobian must equal 1. So let's have a look.

The following is my work for determining if the Berry Map is area preserving.

ClearAll@k, x, y, A, B, F, G, P, rD
r@x_, y_D := y + Hkê H2 *PiLL * Sin@2* Pi* xD;
q@x_, y_D := x - Sin@2* Pi* r@x, yDD

Here, r[x,y] stands for rn+1 , y for rn , q[x,y] for qn+1 , and y for qn .
The work below is piecing together the different parts of the Jacobian were
G = ∑ rn+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ rn

, F = ∑ rn+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ qn
, B = ∑ qn+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ rn

, A = ∑ qn+1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑ qn

A = D@Hx - Sin@2 * Pi* r@x, yDDL, xD
1 - 2 k p Cos@2 p xD CosA2 p Jy +

k Sin@2 p xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p

NE
B = D@Hx - Sin@2* Pi* r@x, yDDL, yD
-2 p CosA2 p Jy +

k Sin@2 p xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p

NE
F = D@Hy + Hkê H2* PiLL * Sin@2* Pi* xDL, xD
k Cos@2 p xD
G = D@Hy + Hkê H2* PiLL * Sin@2* Pi* xDL, yD
1

There for our Jacobian will be 

J = JG F
B A N

J = 88G, F<, 8B, A<<981, k Cos@2 p xD<,9-2 p CosA2 p Jy +
k Sin@2 p xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p

NE, 1 - 2 k p Cos@2 p xD CosA2 p Jy +
k Sin@2 p xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 p

NE==
And, drumroll please, the determinant is...
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Det@JD
1

There you have it folks, the determinant for the Jacobian of our map is 1, therefore it is area preserving.

Another important aspect of our map are the fixed points.  A fixed point is defined as a point on that, when iterated through
the map,  gives itself as the next point.  To determine which points to test to see if they are fixed points,  we look at our
mapping functions as well as the map itself.  Doing this we find that the following appear to be fixed points:Hq, rLH0, 0LH0.5, 0.5LH0, 0.5LH0.5, 0LH0.5, 0.25LH0.5, 0.75LH0, 0.25LH0, 0.75L
To determine if they are in fact fixed points, we run them through the map, where f is the mapping functions.

f@80, 0<D80., 0.<
f@80.5, 0.5<D80.5, 0.5<
f@80, 0.5<D81., 0.5<

Note:  Entering 0 for q here gives us 1 after an iteration, but we know that on our map, 1 = 0.  Isn't that great math?

f@80.5, 1<D80.5, 0.<
Note:  Likewise here, we get 0 instead of 1.

f@80.5, 0.25<D80.5, 0.25<
f@80.5, 0.75<D80.5, 0.75<
f@80, 0.25<D80., 0.25<
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f@80, 0.75<D80., 0.75<
Indeed, all eight of the points we found by looking at the map and mapping functions were fixed points.  We must now
determine for which parameter values those fixed points are stable (elliptical) points, or unstable (hyperbolic) points.  To do
so, we take the trace of the stability matrix, P, at the fixed point for the different parameter values.  If -2 < TrP < 2, then the
fixed point is stable, else, it is unstable.  Note:  P is just equal to J evaluated at the fixed point.

For (0,0)
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x = 0; y = 0; k = .1
Tr@JD
1.37168

As we see from above, at k = 0.1, (0,0) is stable.  Now, let's see for what range of values each fixed point is stable or unsta-
ble.

Stable Unstable Neither (TrP = 2 or -2)
(0,0) 0 < k < 0.63662 k > 0.63662 k = 0, k = 0.63662
(0.5,0.5) 0 < k < 0.63662 k > 0.63662 k = 0, k = 0.63662
(0,0.5) 0 < k < 0.0000005 k > 0.0000005 k = 0, k = 0.0000005
(0.5,0) 0 < k < 0.0000005 k > 0.0000005 k = 0, k = 0.0000005

As you can see, the points at (0,0.5), and (0.5,0) are stable for only the slightest time in our movie.  For the final four fixed
points, something a little more interesting seems to occur.

(0.5,0.25) none none all k
(0.5,0.75) none none all k
(0,0.25) none none all k
(0,0.75) none none all k

These fixed points seem to be neither stable nor unstable,  rather they are of the variety that seem to be stable if they are
moved to one side, and unstable if moved to the other.

Before we move on to our final look at the Berry Map, I would like to look at the fixed point located at (0.5,0.5).  Going back
to the perturbation movie,  if you watch the center carefully,  you see a sideways figure eight appear from the center then
disappear into the chaos.  That is what  becomes of the (0.5,0.5) trajectory above k = 0.63662.  Let's  look at the building
trajectory.

k= 0.63
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Now k = 0.66
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k = 0.7
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k = 0.72
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And finally, k = 0.77
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As you can see, that fixed point's trajectory is now chaotic.

To wrap up this project, I wanted to take a closer look at one of the things that makes the Berry Map special--those wierd
humps.

As you can see from the zoomed in plot below, the hump look more or less like a chaotic region with small resonances below
and a good number floating on the edge of the chaos.
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If we look closer,however,we will see a pattern.
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The hump repeats on itself as it we zoom in closer.  This is the fractal structure of the Berry Map, our own unique study.

That will just about do it for this project.  If you would like to browse through the perturbation maps with parameter mark-
ings, feel free to look in the notebook, Comp3Perturbations located on the desktop.  For your knowledge, I spent a good hour
trying to show the stable and unstable manifolds, but was unsuccessful.  Oh well.

 I'm going on my 8th hour of working on this, my final comp project, and quite frankly, i'm a little sleepy.  Hope you've
enjoyed it.
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