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ABSTRACT:  Studying chaos in conservative systems helps to illustrate many important features of classical nonlinear
dynamics and highlights some important issues in quantum-classical correspondence, but few undergraduates physics majors
are exposed to this fascinating subject.  This poster will describe one way to incorporate the study of conservative chaos into
an upper-level classical mechanics course.  The focus is on using a general-purpose computing program such as Mathematica
to illustrate many of the important features of chaos in two-dimensional Hamiltonian maps.  This approach helps students to
quickly acquire the tools they need to carry out their own studies of chaotic systems.
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The Goals
1) To get students in an upper-level classical mechanics sequence excited about

classical mechanics by presenting modern material on chaotic systems.
2) To teach students the main concepts that are important for understanding

chaotic motion in conservative (Hamiltonian) systems.
3) To help students visualize various aspects of chaotic motion.
4) To encourage students to develop proficiency with general-purpose

computation software such as Mathematica or Maple.
5) To provide students with the tools required to carry out independent research

on two-dimensional, area-preserving, chaotic maps.

The computational approach to teaching conservative chaos presented here
consists of four basic steps:

1) The instructor uses a general-purpose computing program (such as
Mathematica or Maple) to prepare several figures that serve to illustrate
important concepts in conservative chaos.  These figures help students
visualize various aspects of motion in a particular system, which is a 2-D,
area-preserving, chaotic map.  Such a map serves as a model for a
conservative classical system.

2) The instructor presents lectures on these concepts, using the figures to
illustrate important points.

3) Students are given the code used to create the figures, along with an
explanation of what the code does (and possibly how the code works).  They
are then asked to create similar figures using different parameter values.
This requires only very small modifications of the code.

4) Once the entire unit on conservative chaos has been completed, students are
asked to carry out an independent research project (individually or in small
groups) in which they will study a  2-D, area-preserving, chaotic map that is
different from the one presented in the lectures and homework assignments.

The map we choose for illustrating the important ideas of conservative chaos is
the standard map1.  The standard map displays many of the features that are
characteristic of chaos in conservative systems.  The equation of the map is
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The Basic Approach

The Standard Map

where r and q are dimensionless phase space variables.  Both coordinates are
periodic with period 1, so the motion actually takes place on a 2-torus.  You can
think of r as an action variable and q as the corresponding angle, or it might be
easier to think of r and q as dimensionless polar coordinates.  K is a parameter
that controls the nonlinearity of the system.  For K = 0 the map is integrable.

The remainder of this poster presents several figures that illustrate different
aspects of the dynamics of the standard map.  A brief explanation accompanies
each figure, but more detailed explanations can be found by visiting the author’s
website (see the section titled The Website at the end of the poster) or reading
one of the recommended texts2.  In addition, all of the Mathematica code used to
create these figures is available on the website.

Surfaces of Section
Figure 1 shows the surface of section for the standard map with K = 0.8.
Surfaces of section illustrate the overall dynamics of a system.  To construct a
surface of section, simply choose several initial conditions in various regions of
the phase space.  For each initial condition, iterate the mapping function many
times and plot the resulting points. Surfaces of section illustrate many important
phase space features found in conservative systems. Continuous lines that run
from left-to-right are KAM tori and
represent integrable motion.
Elliptical curves are nonlinear
resonances, in which the motion of
trajectories near a stable periodic
point become phase-locked.
Regions of the phase space that
show a disorganized scatter of points
are chaotic.  These regions of chaos
form when nonlinear resonances
overlap. Figure 1

Individual Trajectories
Individual trajectories can also be useful for illustrating certain aspects of the
map’s dynamics.  For example, the chaotic trajectory shown in Figure 2 appears
to be blocked from moving into the middle-third of the phase space. Chaotic
trajectories can be blocked in
this way by KAM tori.  As K
increases the KAM tori breakup
and chaotic trajectories become
free to wander throughout the
phase space.  In fact, the
trajectory shown in Figure 2 is
only partially blocked and it will
enter the apparently forbidden
region after a sufficiently large
number of map iterations.

Figure 2
Area-Preservation and Liouville Flow

A collection of trajectories in a conservative system will occupy a constant
volume of phase space as the trajectories move around under the dynamics of
the system.  This is known as Liouville’s Theorem. This property of
conservative systems can be
illustrated in the standard map by
applying the map repeatedly to a
group of points in the phase space
and examining the resulting
distribution.  Figure 3  illustrates the
flow of points for the standard map
with K = 1.5.  Each iteration of the
map causes the distribution to stretch
and bend, but the area occupied by
the distribution remains constant. Figure 3

Motion Near an Unstable Fixed Point
Unstable fixed (or periodic) points lie at the heart of the chaotic regions of phase
space in conservative systems.  Near a typical unstable fixed point, trajectories
move in toward the fixed point along one line (called the stable direction) and
then out away from the fixed point along another line (called the unstable
direction).  Trajectories that start off near the fixed point will move away at an
exponentially increasing rate as the map is iterated.  This exponential divergence
is the essence of chaos.
Figure 4 shows the stable and unstable
directions of the unstable fixed point located
at (0.5,0) for the standard map with K = 1.5.
These lines are constructed by starting with a
group of points in the vicinity of the fixed
point.  These points will move out along the
unstable direction under application of the
forward map (forming the black line) and out
along the stable direction under application of
the inverse map (forming the red line). The
arrows in Figure 5 indicate the direction that
points will move under application of the
map.  Note the correspondence between
Figure 4 and Figure 5.

Figure 4

Figure 5

Figure 6

The stable and unstable directions
can be extended to form stable and
unstable manifolds.  The stable
(unstable) manifold is the set of all
points that eventually move into the
fixed point under the application of
the forward (inverse) map.  In a
chaotic system these manifolds form
a complicated structure called a
homoclinic tangle, a portion of which
is shown in Figure 6.  The
complexity of the homoclinic tangle
is responsible for the seemingly
random motion of trajectories in the
chaotic region of the phase space.

The Website
For more information visit the author’s website
http://fsweb.berry.edu/academic/mans/ttimberlake/cc/
which contains an article detailing this approach to teaching conservative chaos,
the Mathematica code used to generate the figures, animations illustrating these
concepts, lecture slides on this material, sample homework assignments, and
samples of student work related to this material.


