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Model & Previous Results

Driven Inverted Gaussian (rad. gauge, atomic units)

€

H= % [p = 6sincut] - Voexp [— (x/a)z]

e V,=0.63 a.u.,a=2.65au., ®=0.0925 a.u., € 1s varied

Number of quantum resonance states increases as € 1s

increased (Ben-Tal, Moiseyev, and Kosloff, J. Chem.
Phys. 98, 9610 (1993)).

Light-induced resonance states are scarred on
unstable periodic orbits of the classical motion (T.
Timberlake and L. E. Reichl, Phys. Rev. A 64,
033404 (2001)).

Possible connection between scarring and
stabilization against 1onization?



Classical Dynamics
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Scarred Resonance State

* One of the light-induced resonance states that 1s
created as € 1S increased has Husimi distributions

that are peaked on Orbit C.
e This state 1s a scar of Orbit C.
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Quantum-Classical Correspondence

e The continuous line shows the Lyapunov exponent
(A\) of Orbit C.

e The data points show the photodetachment rate (I")
of the scarred state. Note that the lifetime 1s T=1/T".

* Note the similar behavior as a function of ¢.
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Correlat10n of k and F
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Stable Island State

e The resonance state that 1s connected to the ground

state as ¢ — 0 remains peaked inside the stable 1sland
until € becomes large.
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I for Stable Island State

e The photodetachment rate (I') of the stable i1sland state
increases as € increases (and the size of the classical
stable 1sland decreases).

e The jumps in the plot may be due to avoided crossings
in the Floquet spectrum.
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Conclusions

The lifetime of the stable 1sland state gets shorter

and the lifetime of the scarred state gets longer as
€ 1s Increased.

For large ¢ the scarred state 1s the longest-lived

resonance and its lifetime continues to increase as
€ 1S 1ncreased.

This 1s evidence for quantum stabilization on an
unstable classical structure, but this behavior 1s
still correlated with a classical quantity: the
Lyapunov exponent of the unstable orbit.

The correlation between the photodetachment rate
and the Lyapunov exponent represents a new type
of quantum-classical correspondence.



