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The quantum dynamics of the periodically-driven infinite square well is examined. This simple
system illustrates some important aspects of quantum chaos. The phase space structure of the quan-
tum eigenstates are shown to mimic the structure of the classical phase space and these eigenstates
show a transition from “regular” to “chaotic” as the strength of the driving field is increased. The
spacing of eigenvalues undergoes a transition from Poisson to COE statistics as the classical system
becomes chaotic. High-harmonic generation in the radiation spectrum is shown to be closely tied
to the onset of chaos in the classical system.

I. INTRODUCTION

It is now widely recognized that there are two distinct
types of motion possible in classical Hamiltonian systems:
regular motion and chaotic motion. Chaotic motion is
usually distinguished by its sensitive dependence on ini-
tial conditions. The distance between two chaotic trajec-
tories that start off near each other in phase space will
increase exponentially in time, while regular trajectories
exhibit only polynomial divergence.

Such a distinction between regular and chaotic mo-
tion cannot exist in quantum mechanics. The Heisenberg
uncertainty principle prevents a particle from simultane-
ously having well-defined position and momentum, there-
fore it is impossible to specify a particle’s location in
phase space. There are no trajectories in quantum me-
chanics, so the classical criterion for distinguishing regu-
lar motion from chaotic motion cannot apply. The ques-
tion then arises: Can the dynamics of a quantum system
whose classical limit (h̄ → 0) is chaotic be distinguished
from the dynamics of a quantum system whose classical
limit is regular? Studies carried out over the last thirty
years show that the answer to this question is yes.

One feature that can be used to distinguish between
regular and chaotic quantum systems is the statisti-
cal distribution of energy eigenvalues. The eigenvalues
of regular systems are randomly distributed, while the
eigenvalues of chaotic systems have the same statistical
properties as the eigenvalues of random matrices. The
eigenvectors of regular systems also differ noticeably from
those of chaotic systems. Indeed, the study of the dis-
tinctions between regular and chaotic quantum dynamics
has matured to the point that there are now several text-
books available on the subject.1–4

Understanding the quantum dynamics of classically
chaotic systems (or “quantum chaos”) has provided a
great deal of insight into a number of experimentally
observed phenomena, such as high-harmonic generation5

and multi-photon ionization.6 More recently, experiments
have been conducted to observe specific characteristics
of quantum chaos, such as dynamical localization and
chaos-assisted tunneling.7 These experiments, along with
many others, have served as both illustrations and tests
of the ideas of quantum chaos.

In this paper we examine the classical and quantum dy-
namics of the periodically driven infinite square well. In
the classical version of this system the low-energy trajec-
tories exhibit a transition from regular motion to chaotic
motion as the strength of the driving field is increased.
The goal of this paper is to illustrate how the quantum
eigenvalues and eigenvectors of this system change as the
driving field is increased and to connect these changes
with the transition to chaos in the classical system.

II. CLASSICAL DYNAMICS

The Hamiltonian for the periodically driven infinite
square well system is

H̃ =
p̃2

2m
+ ǫ̃x̃ cos(ω̃0t̃), |x̃| ≤ a, (1)

wherem is the mass, p̃ is the momentum, and x̃ is the po-
sition of the particle. The width of the square well is 2a.
The driving field has amplitude ǫ̃ and frequency ω̃0, with
t̃ as the time coordinate. This Hamiltonian can be made
dimensionless by the following scaling transformations8:
H̃ = Hc, x̃ = xa, p̃ = p

√
2mc, ǫ̃ = ǫc/a, t̃ = ta

√

2m/c,

and ω̃0 = (ω0/a)
√

c/(2m), where c is a new unit of en-
ergy for the scaled system. The new Hamiltonian (in
units of c) is

H = p2 + ǫx cos(ω0t), |x| ≤ 1, (2)

where all quantities are now dimensionless. There is only
one independent parameter in this system since the trans-
formation (ω0, ǫ) → (ω0

√
c, ǫc) is equivalent to a change

of the energy unit c. Therefore we can obtain a complete
picture of the classical dynamics by choosing an arbitrary
value for ω0 (ω0 = 80 in this paper) and investigating the
dynamics as ǫ is varied.

Let us take a moment to examine the symmetries of
this system. The most obvious symmetry is that the
Hamiltonian is unchanged by the transformation p →
−p, indicating that the dynamics must be symmetric
about the axis p = 0. The Hamiltonian also is sym-
metric under the discrete time translation t → t + T ,
where T = 2π/ω0 is the period of the driving field. Note
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that the Hamiltonian is not symmetric under infinitesi-
mal time translations, so energy is not a conserved quan-
tity in this system because the Hamiltonian depends ex-
plicitly on time. In addition, this Hamiltonian is sym-
metric under a generalized parity transformation defined
by x → −x, t → t + T/2. For ǫ = 0, of course, the
Hamiltonian is symmetric under the more conventional
parity transformation x→ −x.

For ǫ = 0 the dynamics of this system is extremely
simple: the particle bounces back and forth between the
walls of the well, maintaining a constant magnitude of
momentum. As ǫ is increased, however, the dynamics
exhibits a transition to chaos that is typical for Hamil-
tonian systems (for an introduction to chaos in Hamilto-
nian systems, see Ref. 9). Nonlinear resonances form in
regions of phase space where the frequency of the driving
field is a harmonic of the frequency with which the un-
driven particle bounces between the walls. The condition
for a nonlinear resonance is ω0 = Nπp, where N is an in-
teger. These nonlinear resonances grow as ǫ is increased.
For sufficiently large ǫ the resonance zones will overlap
and create a region of chaotic motion in the phase space.

The transition to chaos can be illustrated using strobe
plots of the motion. Strobe plots are created by selecting
an initial point for a trajectory in phase space and plot-
ting the location of the trajectory after each cycle of the
driving field. If this procedure is repeated for initial con-
ditions throughout the phase space, a plot of the resulting
points gives a detailed picture of the system’s dynamics.
Figure 1 shows strobe plots for the driven infinite square
well at four different field strengths. For ǫ = 50 the
motion is regular for large values of momentum, as in-
dicated by the continuous lines running from x = −1 to
x = 1. These curves are known as Komolgorov-Arnol’d-
Moser (or KAM) tori. The N = 1 nonlinear resonance
is clearly visible as a series of half-ellipses centered at
p = ω0/π ≈ 25.5. The N = 3 resonance is visible at
p = ω0/(3π) ≈ 8.5 (to first order, the driving field does
not produce resonances with even values of N). Addi-
tionally, there is a scatter of points at small values of p
indicating that the low-momentum region of the phase
space is chaotic. This region of chaos has formed be-
cause the nonlinear resonances with N > 3 have already
overlapped and destroyed each other, producing chaotic
motion as a result.

As ǫ is increased the system becomes increasingly
chaotic. For ǫ = 500 the N = 1 resonance is still intact
(although it is distorted and its location has shifted), but
it is now an island in a sea of chaos. As ǫ is increased
to 3000 we see that the chaotic sea has grown and the
resonance island has split, with the two pieces moving
to different areas of the phase space. At ǫ = 6200 the
chaotic sea has grown still larger and there is no longer
any evidence of structure within it. Note that for all field
strengths the motion is regular at very high momenta.

(a) ǫ = 50

x

p

10.60.2−0.2−0.6−1

50

40

30

20

10

0

(b) ǫ = 500

x

p

10.60.2−0.2−0.6−1

60

50

40

30

20

10

0

(c) ǫ = 3000

x

p

10.60.2−0.2−0.6−1

100

80

60

40

20

0

(d) ǫ = 6200

x

p

10.60.2−0.2−0.6−1

120

100

80

60

40

20

0

FIG. 1: Strobe plots illustrating the classical dynamics for
the driven infinite square well at four different field strengths.
Because the system is symmetric in p, only p ≥ 0 is shown.
As the strength of the driving field is increased, nonlinear
resonances overlap and produce a large region of chaotic mo-
tion at low momenta. At high momenta the motion remains
regular.

III. FLOQUET THEORY

As noted above, energy is not a conserved quantity
in the driven infinite square well because the Hamilto-
nian is not symmetric under infinitesimal time transla-
tions. Therefore, in analyzing the quantum dynamics of
this model we cannot take the usual approach of find-
ing energy eigenvalues and eigenvectors. Recall, though,
that this model does possess symmetry under the discrete

time translation t → t + T . We can take advantage of
this symmetry to construct an operator whose eigenval-
ues and eigenvectors will characterize the dynamics of the
system in much the same way that the eigenvalues and
eigenvectors of the Hamiltonian characterize the dynam-
ics of energy-conserving systems. The operator that will
serve this purpose is the Floquet operator, Û(t, t + T ),
which is the unitary time evolution operator that trans-
forms the wavefunction at time t into the wavefunction
at time t+ T :

Û(t, t+ T )ψ(t) = ψ(t+ T ). (3)

This operator depends on t, but we can focus our atten-
tion on the initial phase of the driving field and calculate
the eigenvalues and eigenvectors of the Floquet operator
with t = 0: Û(0, T ) = Û .

To construct the Floquet operator we will need to solve
the time-dependent Schrödinger equation (TDSE). The
TDSE for the Hamiltonian of Equation 1 is

ih̄
∂

∂t̃
|ψ(t̃)〉 =

(

− h̄2

2m

∂2

∂x̃2
+ ǫ̃x̃ cos(ω̃0 t̃)

)

|ψ(t̃)〉, (4)
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where |x̃| ≤ a. We transform to dimensionless coordi-
nates as in the classical system, except that for the quan-
tum system we must scale h̄ rather than p̃: h̄ = κa

√
2mc,

where c is the scaled unit of energy and κ now plays the
role of the “effective” h̄. The transformed TDSE is then

iκ
∂

∂t
|ψ(t)〉 =

(

−κ2 ∂
2

∂x2
+ ǫx cos(ω0t)

)

|ψ(t)〉, (5)

where |x| ≤ 1. The quantum system has three parame-
ters (ω0, ǫ, and κ), only two of which are independent.
We are not concerned here with the κ-dependence of the
dynamics so we will choose κ = 1 (and ω0 = 80 as above).

To numerically solve the TDSE we will use a basis
consisting of energy eigenstates of the undriven infinite
square well. The energy eigenvalues and eigenfunctions
for the infinite square well, which are familiar to students
of quantum mechanics, are given (in the dimensionless
coordinates of our model) by:

En =
π2κ2n2

4
=
π2n2

4
, (6)

〈x|En〉 = sin

(

πn(x− 1)

2

)

(7)

where n is a positive integer. To determine how many
basis states to use in our calculation we can simply look
at the classical strobe plots shown in Figure 1. To ob-
tain accurate Floquet eigenstates in the chaotic region
we must ensure that our basis extends well into the high-
momentum regular region of the phase space. For exam-
ple, if we examine Figure 1(d) we see that the chaotic
region extends to p = 115. Recall that for the scaled
version of our model (Eq. 2) the kinetic energy of the
particle is p2, so for ǫ = 6200 our basis must extend in
energy beyond 1152 = 13, 225. Setting En = 13, 225 and
solving for n we find that our basis must extend beyond
n = 73 to completely cover the chaotic region of phase
space at ǫ = 6200.

In the basis we have chosen the wavefunction of
the particle at time t can be written as |ψ(t)〉 =
∑

n cn(t)|En〉. The TDSE can then be transformed into
a differential equation for the coefficients cn(t):

dcn(t)

dt
= −iEn

κ
cn(t) − i

κ
ǫ cos(ω0t)

∑

m

xnmcm(t), (8)

where

xnm =

{

0, (m+ n) mod 2 = 0
16mn

π2(m2
−n2)2 , (m+ n) mod 2 = 1, (9)

is the dipole matrix in our basis. To construct the
Floquet operator we calculate the coefficients cn(T ) by
numerically integrating Eq. 8 with initial condition
ck(0) = 1 and cn(0) = 0 for n 6= k. The resulting co-
efficients form the kth column of the Floquet matrix.
Once the Floquet matrix is constructed its eigenvalues
and eigenvectors can be computed numerically. The Flo-
quet eigenstates are labeled by numbering them in order

of increasing expectation value for the undriven Hamil-
tonian: Hα = 〈qα|p2|qα〉. The eigenvalues of the Floquet
operator must be of the form exp(−iθ) because the Flo-
quet operator is unitary and must have eigenvalues of
unit modulus. The eigenvalues and eigenvectors of the
Floquet matrix satisfy

Û |qα〉 = e−iqαT/κ|qα〉, (10)

where qα is called the quasienergy of the state |qα〉. Be-
cause exp(−i2π) = 1 we see that qα is only defined mod-
ulo ω0/κ.

IV. EIGENSTATES

In order to compare the quantum dynamics to the clas-
sical dynamics we must be able to represent the Floquet
eigenstates in phase space. This requires a bit of sub-
tlety. The uncertainty principle prevents us from defin-
ing a quantum wavefunction as a function of both x and
p, because we can’t assign a probability for the particle
to have simultaneous values for x and p. Instead we can
construct a Husimi distribution10, which is a smoothed
version of the Wigner distribution.11 The Husimi distri-
bution gives us the probability for a particle to be found
in a region of area h̄ centered on a point in phase space.
By smoothing the probability distribution for the particle
over regions of area h̄ the Husimi distribution avoids con-
flicting with the uncertainty principle but still provides
a general picture of where in phase space the particle is
likely to be found.

To construct the Husimi distribution of a quantum
state we calculate the overlap between the quantum state
and a minimum uncertainty wavepacket centered on the
point (x0, p0) in phase space. The wavefunction for this
wavepacket is

〈x|x0, p0〉 =
exp

(

− (x−x0)
2

2σ2 + ip0(x−x0)
κ

)

(σ2π)1/4
, (11)

where the width of the wavepacket in the x-direction
is ∆x = σ/

√
2 and the width in the p-direction is

∆p = κ/(σ
√

2). We use σ = 0.158 in the dimension-
less units of our model (σ has the same units as x). The
Husimi distribution of the state |qα〉 is constructed by
calculating the quantity hα(x0, p0) = |〈x0, p0|qα〉|2 on a
grid of points in phase space. A contour plot of hα(x0, p0)
provides a visual picture of how the quantum state |qα〉
is distributed in phase space.

Husimi distributions of several Floquet eigenstates for
ǫ = 500 are shown in Figure 2. Comparing these Husimi
distributions to the strobe plot in Fig. 1(b) shows a
close correspondence between the structure of the quan-
tum eigenstates the structure of the classical phase space.
State 29 (Fig. 2(a)) lies along the KAM tori in the high
energy region of the classical phase space. State 24 (Fig.
2(b)) lies in the center of the N = 1 nonlinear reso-
nance of the classical phase space. State 8 (Fig. 2(c))
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FIG. 2: Husimi distributions of four Floquet eigenstates for
ǫ = 500. Note how the distributions shown in (a)-(c) corre-
spond to the different regions of the classical phase space in
Fig. 1(b). The distribution shown in (d) is peaked on a line
of marginally stable periodic orbits that lie along p = 0.

is spread throughout the classically chaotic region. Note,
however, that this Floquet state is not spread uniformly
but has well-defined peaks and valleys. Quantum eigen-
states that lie in classically chaotic regions often show en-
hanced probability at the locations of unstable periodic
orbits of the classical dynamics. States with this prop-
erty are called scars12 and have been found in a wide
variety of quantum systems. State 1 (Fig. 2(d)) also is
in the chaotic region of the classical phase space, but it
is confined to the region near p = 0. Even this state is
displaying a quantum-classical correspondence because it
is peaked on a continuous line of marginally stable pe-
rioidic orbits that lie along p = 0 in the classical phase
space.13

Examples of “chaotic” Floquet states at ǫ = 3000 and
ǫ = 6200 are shown in Figure 3. Comparing these Husimi
distributions to the classical strobe plots of Fig. 1 we see
that these Floquet states are spread throughout the clas-
sically chaotic region in each case. As the chaotic region
grows, the Floquet states in that region grow with it.
In addition, more Floquet states will occupy the chaotic
region since the number of quantum states occupying a
given region of phase space is proportional to the area of
that region. Note, however, that the Floquet states at
very high momenta will retain their regular character in
correspondence with the classical dynamics.

V. EIGENVALUES

It is perhaps not too surprising that the structure of
quantum eigenstates would mimic the structure of classi-
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FIG. 3: Husimi distributions of two “chaotic” Floquet states.
Note how the distributions correspond to the chaotic region
of the strobe plots in Figures 1(c) and 1(d).

cal phase space. However, it may come as a surprise that
some properties of the quantum eigenvalues of a system
are closely tied to the classical dynamics. In fact, in sys-
tems whose classical dynamics is completely chaotic it
can be shown that the entire set of (quasi)energy eigen-
values is determined by the unstable periodic orbits of the
classical motion.3 In our model the phase space is always
a mixture of regular and chaotic motion, and in this case
the exact connection between the quantum eigenvalues
and the classical dynamics is less clear. However, it can
be shown that certain statistical properties of the quan-
tum eigenvalues depend on whether the corresponding
classical system is chaotic or regular (see, for example,
Reference 15).

Here we will focus on one particular property of the
eigenvalues: the distribution of level spacings. Level
spacings are the differences between adjacent eigenvalues.
The level spacing density, P (s)ds, is defined to be the
probability that the spacing, s, between any two neigh-
boring eigenvalues lies in the interval s → s + ds.1 We
will assume in the following that the spacings have been
scaled so that the average spacing is one. For systems
with regular classical dynamics the quantum eigenvalues
are random and the level spacings are expected to follow
a Poisson distribution

P (s) = e−s. (12)

For systems with chaotic classical dynamics the quan-
tum eigenvalues are known to have the same statistical
properties as the eigenvalues of random matrices. Using
ensembles of random 2 × 2 Hermitian matrices Wigner
derived16 what is known as the Gaussian Orthogonal En-
semble (GOE) distribution17

P (s) =
πs

2
e−πs2/4. (13)

Since we are looking at quasienergies (which are de-
rived from the eigenvalues of the unitary Floquet matrix)
rather than energy eigenvalues, we must instead consider
the distribution of level spacings for random unitary ma-
trices (known as the Circular Orthogonal Ensemble, or
COE). For large matrices the level spacing distribution
for the COE is identical to the GOE distribution given
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above.18 In the driven infinite square well we expect to
see a change from Poisson statistics to COE statistics,
at least among the states that lie in the low momentum
chaotic region, as ǫ is increased.

Calculating a numerical spacing distribution would
seem to be straightforward for our model. Once we
have numerically determined the quasienergies at a given
field strength we can simply find the differences between
consecutive quasienergies. These spacings can then be
grouped into bins and displayed on a histogram that can
be compared to the theoretical distributions given above.
However, there are a few issues we must consider. First,
we must have a sufficiently large number of spacings if
we want to make comparisons between the histogram of
our data and the theoretical distributions. The second
consideration is much more subtle. Recall from Section
II that the Hamiltonian of our model is invariant un-
der the generalized parity transformation x → −x and
t→ t+T/2. The probability distributions for the Floquet
eigenstates must also be invariant under this transforma-
tion. Therefore, the Floquet eigenstates can be grouped
into two classes: even states whose wavefunctions are
unchanged by the generalized parity transformation and
odd states whose wavefunctions change sign under the
generalized parity transformation. We expect the level
spacings for each class of Floquet states to change from
Poisson to COE as ǫ is increased. A combination of two
Poisson data sets will still follow Poisson statistics (be-
cause if you combine two sets of random numbers you
get a set of random numbers). If we combine two sets of
COE data, though, the combination will not follow the
COE statistics. Instead we expect a combination of two
COE data sets to produce a level spacing distribution
given by15

P (s) =
1

2
e−πs2/8 +

πs

8
e−πs2/16erfc

(√
πs

4

)

, (14)

where erfc(z) = (2/
√
π)

∫

∞

z dt exp(−t2) is the comple-
mentary error function.

Figure 4 shows a comparison between our numeri-
cal data and the theoretical predictions at several field
strengths. Each plot shows a histogram of our numerical
data as well as the theoretical curves for the Poisson dis-
tribution (Eq. 12) and the distribution for 2 sets of COE
data (Eq. 14). The data for ǫ = 0 (Figure 4(a)) was
generated by calculating the first twenty thousand val-
ues of En (modulo 80) because for ǫ = 0 the quasiener-
gies are just the energy eigenvalues (modulo ω0/κ) of
the undriven infinite square well. The histogram for
ǫ = 0 matches the Poisson curve almost exactly. The
data shown in Figures 4(b)-(d) were generated with the
numerical procedure described in Section III. Only the
states with the 40 lowest values of Hα (which are the
states that sit in the low momentum chaotic region for
large ǫ) were used in determining the spacings. In each
case the histogram shows a combination of spacing data
for several field strengths. For example, the data in Fig-
ure 4(b) combines spacing data for ǫ = 400, 500, 600,
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FIG. 4: A comparison of numerically calculated level spac-
ing distributions (histogram) to the distributions for Poisson
statistics (thin line) and for a combination of two data sets fol-
lowing COE statistics (dashed line). The spacings have been
scaled so that the mean spacing 〈s〉 = 1. The histogram in
(a) represents data for 20,000 eigenvalues at ǫ = 0. The his-
togram in (b) represents data for the 40 states with the lowest
values of Hα at six different field strengths ranging from 400
to 900. The remaining histograms are similar to (b) but with
ǫ ranging (c) from 2700 to 3200 and (d) from 6000-6500. Note
that the data matches the Poisson curve at ǫ = 0 but switches
over to the curve for 2 COEs as ǫ is increased.

700, 800, and 900. In each case there were a total of 240
quasienergies used in determining the histogram of level
spacings. There is a clear change in the level spacing
statistics as ǫ is increased. The histograms in Figures
4(b) and 4(d) are much closer to the distribution for 2
COEs.

With some additional effort it is possible to separate
the eigenstates of even and odd generalized parity. Each
eigenstate can be examined individually to determine
whether it is even or odd under the generalized parity
transformation. To do this we integrate the TDSE using
the eigenstate to be examined as the initial condition.
The integration is carried out from t = 0 to t = T/2.
The eigenstate ψα(x, t) is even under the generalized par-
ity transformation if

ψα(−x, T/2) exp(iqαT/(2κ)) = ψα(x, 0)

and odd if

ψα(−x, T/2) exp(iqαT/(2κ)) = −ψα(x, 0).

Once each eigenstate is examined in this way, the spac-
ings between eigenvalues for eigenstates of the same gen-
eralized parity can be found. Once these spacings are
calculated for each class, the spacing data can be recom-
bined and binned to form a histogram that can be com-
pared with the theoretical predictions of Eqns. 12 and 13.
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FIG. 5: A comparison of numerically calculated level spac-
ing distributions (histogram) to the distributions for Poisson
statistics (thin line) and COE statistics (dashed line). The
spacings have been scaled so that the mean spacing 〈s〉 = 1.
The histogram in (a) represents data for 20,000 eigenvalues
at ǫ = 0, but only spacings between members of the same
parity class were used. The histogram in (b) represents data
for the 20 states with the lowest values of Hα in each gener-
alized parity class at six different field strengths ranging from
400 to 900. The remaining histograms are similar to (b) but
with ǫ ranging (c) from 2700 to 3200 and (d) from 6000-6500.
Note that the data matches the Poisson curve at ǫ = 0 but
switches over to the COE curve as ǫ is increased.

Figure 5 shows the results of this analysis. The data in
Figure 5(a) was generated from the first 20,000 eigenval-
ues of the undriven infinite square well, but only spacings
between states of the same parity class were calculated.
The resulting histogram is in excellent agreement with
the Poisson distribution of Eq. 12. The data in Figs.
5(b)-(d) was generated using the 20 states with the low-
est values of Hα in each generalized parity class. Eigen-
values from six different field strengths were combined
in each plot, so each histogram represents 240 quasiener-
gies. The distribution of quasienergy spacings shows a
clear transition from Poisson statistics to COE statistics
as the field strength is increased.

The most obvious distinction between Poisson and
COE statistics is that the COE distribution predicts far
fewer small spacings. The Poisson distribution is peaked
at s = 0, while the COE distribution goes to zero at
s = 0. Quantum systems that follow COE statistics are
said to exhibit level repulsion, because the eigenvalues
seem to avoid coming near each other. This phenomenon
is clearly illustrated by plotting the quantum eigenval-
ues as a function of the nonlinearity parameter. Figure
6 shows the quasienergies for the driven square well as
function of ǫ. Although the eigenvalue curves frequently
cross each other at low ǫ, they tend to avoid crossing at
higher values of ǫ. The onset of avoided crossings as ǫ
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FIG. 6: Quasienergies of the driven infinite square well as
a function of ǫ. A basis of 40 eigenstates of the undriven
square well was used to calculate these quasienergies. This
basis extends well into the regular region of phase space for
the field strengths shown. Note the increase in the number of
avoided crossings as ǫ is increased.

is increased indicates level repulsion and the transition
to COE level spacing statistics. Moreover, there is evi-
dence that avoided crossings are associated with changes
in the phase space structure of the Floquet states.19 So
avoided crossings are not only a third feature of quantum
chaos, but also they provide a link between the other two
features we have already discussed.

VI. RADIATION SPECTRA

The features of quantum chaos discussed so far may
seem far removed from practical experiments. There are,
however, signs of the transition to chaos in our quantum
model that could be easily observed in experiments. The
radiation spectrum produced by a quantum particle in
the driven infinite square well can display a phenomenon
called high-harmonic generation (HHG) that is closely
tied to chaos in the classical version of the system. In
HHG the radiation spectrum shows harmonic peaks of
roughly constant intensity out to some large harmonic
of the driving field.5 Beyond this “cutoff” the spectrum
falls off exponentially.

To calculate the radiation spectrum for a single Flo-
quet eigenstate we must solve the TDSE over several cy-
cles of the driving field using the Floquet eigenstate as
our initial condition. Integrating over more cycles pro-
duces a higher resolution spectrum. Once the TDSE has
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been solved we calculate an acceleration time series given
by

〈ψ(t)|ẍ|ψ(t)〉 =
∑

m,n

c∗n(t)ẍnmcm(t), (15)

where the c’s are the coefficients from Equation 8 and

ẍnm = − 1

κ2
(En − Em)2xnm (16)

+
1

κ2
ǫ cos(ω0t)

∑

k

(2Ek − En − Em)xnkxkm

is the “acceleration matrix element.” The power spec-
trum is then estimated by calculating the square modu-
lus of the Fourier transform χ(ω) of the acceleration time
series.

Figure 7 shows radiation spectra for several Floquet
states. In each case the TDSE was integrated over 16
cycles of the driving field. This is actually unnecessary
because the Floquet eigenstate wavefunctions are peri-
odic in time with period T . However, integrating over
several cycles provides greater frequency resolution and
illustrates the fact that the Floquet eigenstates radiate
only at harmonics of the driving field. In fact, Figure 7
shows that the Floquet states radiate only at odd har-
monics of the driving field. The even harmonics are sup-
pressed because of the spatial symmetry of the infinite
square well.

Figure 7(a) shows the spectrum for the state shown
in Figure 2(a), which does not exhibit HHG. There is a
dramatic falloff in power after the first harmonic. This
is characteristic of Floquet states that lie in regular re-
gions of the phase space. By contrast the spectrum in
Figure 7(b) shows clear HHG with no dramatic falloff in
power until after the 25th harmonic. This state is spread
throughout the chaotic region (see Fig. 2(d)) and it’s
cutoff is determined by the energy range spanned by the
chaotic sea. This energy range is given by p2

max − p2
min,

where pmax and pmin are the maximum and minimum
magnitudes of momentum in the chaotic region (pmin =
0). Setting this energy range equal to the maximum pho-
ton energy we find that the classical prediction for the
cutoff is

ωmax/ω0 = p2
max/(κω0). (17)

Since the cutoff in Fig. 7(b) occurs at the 25th harmonic
this corresponds to pmax ≈ 45 for ǫ = 500. Note that
this value is indeed close to the top of the chaotic sea in
Fig. 1(b). Similar results are found for the spectrum in
Fig. 7(c) which has a cutoff at the 149th harmonic. This
corresponds to pmax ≈ 109 for ǫ = 6200. This result is in
agreement with the strobe plot shown in Fig. 1(d). Thus
we see that the structure of the classical phase space helps
determine the radiation spectra of Floquet eigenstates.
States that are spread throughout a chaotic region of
phase space exhibit HHG with a cutoff determined by
the energy range of the chaotic sea, while states that lie
in regular regions display no HHG and radiate almost
exclusively at the first harmonic.
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FIG. 7: Radiation spectra for several Floquet states. The
spectrum shown in (a) is for state 29 at ǫ = 500 (see Fig.
2(a)) and exhibits no HHG. The spectrum in (b) is for state
8 at ǫ = 500 (see Fig. 2(d)) and exhibits HHG with a cutoff
near the 25th harmonic. The spectra in (c) is for state 23
at ǫ = 6200 (see Fig. 3(b)) and has a cutoff near the 149th

harmonic.

VII. QUANTUM CHAOS IN THE CLASSROOM

The material presented here could be developed into an
enrichment activity for students in an undergraduate (or
beginning graduate) course in quantum mechanics. To
this end, a Mathematica notebook is provided which can
be used to carry out many of the calculations presented
in this paper.21 FORTRAN programs that can be used to
carry out any of the calculations presented here are avail-
able by request. Armed with these computational tools
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students can explore the structure of Floquet eigenstates,
level spacing distributions, and radiation spectra for the
driven square well at a variety of field strengths. For
example, students could calculate the radiation spectra
for the states shown in Figs 2(b) and 3(a) to determine
how the spectra relate to the structure of the eigenstates
and the classical dynamics. One particularly interesting
problem would be to investigate what happens to the
quantum dynamics when too few basis states are used
in the calculation. Students could be asked to investi-
gate the eigenstates, level spacing statistics, and radia-
tion spectra at ǫ = 6200 using only 40 basis states. Since
the basis covers only a portion of the chaotic region in
the phase space, this will not provide an accurate de-
scription of the quantum dynamics of the driven square
well system for these parameter values. However, the
calculations do pertain to some quantum system. By
analyzing the quantum dynamics of this system one can
determine if the (unknown) corresponding classical sys-
tem is chaotic.22

VIII. SUMMARY AND DISCUSSION

The classical and quantum dynamics of the driven in-
finite square well was examined as the strength of the
driving field is increased. The classical dynamics shows a
clear transition from regular to chaotic motion at low mo-
menta, as can be seen by the formation of a large chaotic
sea in strobe plots of the classical motion. The quantum

dynamics undergoes a number of changes that correspond
to this transition to chaos in the classical dynamics. The
Floquet eigenstates exhibit phase space structure that
mimics the structures seen in the classical phase space.
In particular, as the the field strength is increased many
of the Floquet eigenstates become spread out over the
classically chaotic region of phase space. The quasiener-
gies also exhibit a transition, with the distribution of
level spacings changing from a Poisson distribution to
a COE distribution as the classical system becomes in-
creasingly chaotic. Both of these changes are connected
with avoided crossings in the eigenvalue spectrum. Fi-
nally, the cutoff for high harmonic generation in the ra-
diation spectrum of a chaotic Floquet state was shown
to be determined by the energy range of the chaotic sea
in the classical phase space.

Because the model of the driven infinite square well is
relatively simple, this material could be incorporated into
an advanced undergraduate or beginning graduate course
in quantum mechanics. A Mathematica notebook21 that
implements many of the calculations described here is
available for this purpose. Finally, it should be men-
tioned that this simple system has been used to model
real systems like GaAs/AlxGa1−xAs quantum wells sub-
ject to intense far-infrared radiation.23
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