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ABSTRACT:  Wave packets in an infinite square well (ISW) experience perfect quantum revivals at periodic intervals. In the asymmetric infinite square 
well (AISW) a potential step within the well breaks the symmetry of the ISW, perturbing the energy eigenvalues and preventing perfect revivals. Second-
order perturbation theory for the AISW shows that the even-numbered eigenstates and the odd-numbered eigenstates should have different revival times. 

Therefore a wave packet composed of only even-numbered eigenstates should experience partial revivals at a different time then a wave packet composed 
of only odd-numbered eigenstates. We examine the numerically calculated auto-correlation function of even and odd sub wave packets. We find clear 
evidence for different revival times within a certain parameter regime. We also find that this difference in odd and even revival times is a leading cause in 
the poor revivals of the AISW.  
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Introduction 

In the infinite square well (ISW), 

a wavepacket will have a periodic motion. It will initially disperse but after a fixed period (known as 
the revival time) it will return to its initial state.  So, for a given wave packet !(x,0) in the ISW, we 
know that if m is an integer and "rev is the revival time, then 

This effect is referred to as a wave packet revival. The ISW experiences perfect wave packet 
revivals.  The revival time for a wave packet peaked on the nth eigenstate in any system is given by  

For the ISW we have 

 Adding a small step in potential halfway through the ISW results in the asymmetric infinite 
square well,  

Wave packets in the AISW do not have perfect revivals. We used perturbation theory and numerical 
calculations to explain why this potential step causes the perfect wave packet revivals of the ISW to 
become the imperfect wave packet revivals of the AISW. 

Perturbation Theory Solutions for the AISW 

 Perturbation theory can be used to find the energy corrections for the AISW.  First-order time 

independent perturbation theory gives the following formula for the energies of the AISW: 

To first order the energies of the AISW are just the ISW energies plus a constant. This will change 
the overall phase of the wave functions in the AISW, but will not change any of the revival 
properties. So first order perturbation theory predicts perfect revivals. Examining the second order 
energy corrections, however, sheds more light on the situation. Assuming  that we’re dealing with 
wave packets  constructed of high energy (large n) states, the energies of the AISW to second order 
are 

where 

So second order perturbation theory predicts a different revival time for even-numbered eigenstates 
compared to odd-numbered eigenstates. This means that a wave packet composed of only even-
numbered states will have a different revival time than a wave packet composed of only odd-
numbered states. It also means that a wave packet composed of both even-numbered and odd-
numbered states may experience poor revivals because the even-numbered eigenstates are out of 
phase with the odd-numbered eigenstates. That is, when the “even” part of the wave packet is ready 
to revive, the “odd” part isn’t and vice versa. For specific parameter values we find clear evidence 
for this effect. 

Wave Packet 

We examined revivals in the AISW for a Gaussian wave packet with initial state 

where our units are defined such that  

The probability density for the initial wave packet is shown below. If we increase p0 the wave packet 
will still have the same initial probability density, but the wave packet will be built from higher 
energy eigenstates.  We can determine the eigenstate, or value of n, at which the wave packet is 
peaked by simply squaring the value of p0. 

Figure 1. A plot of the wave packet we 
examined. 

To maximize the relative 
difference between even 
and odd revival times we 
chose V0 = .25 and looked 
at wave packets peaked at 
energies corresponding to 
n = 3, 25, and 50. This 
poster shows the results 
for a wave packet peaked 
on the n = 3 state, but 
similar behavior was found 
for the n = 25 and n = 50 
cases.  

Comparing Full Wave Packet Autocorrelation to Subpackets 

When A(t) = 1 the wave packet 
matches up perfectly with its initial 
probability density.  So spikes in the 
autocorrelation function that approach 
A(t) = 1 indicate perfect or near-
perfect revivals.  When we plot the 
autocorrelation function for our full 
wave packet (see Figure 2) we find 
that as t increases the revival peaks 
deteriorate. Our perturbation theory 
analysis suggests one possible reason 
for this deterioration: the even and odd 
revivals are out of sync. 

Figure 2. Autocorrelation function plot of the full wave 
packet.  

To examine this hypothesis we divided the full wave packet into subpackets composed of only 
even-numbered or only odd-numbered eigenstates.  We then computed the autocorrelation 
function for each of these subpackets.  The results are shown in Figures 3 and 4.  

Figure 3. Autocorrelation function of the only even-numbered 
eigenstates subpacket.  

Figure 4. Autocorrelation function of the only odd-numbered 
eigenstates subpacket.  

Though not perfect, the even and odd subpackets exhibit much better revivals than the full wave packet. 
This can be viewed as evidence that the full wave packet revivals are deteriorating as the even and odd 
subpackets gradually get out of sync. To thoroughly examine what’s happening to the full wave packets, 
it’s necessary to look at the even subpacket, the odd subpacket and the full wave packet on the same plot. 

Figure 5. A plot of the full wave packet autocorrelation (green) vs. the 

odd subpacket autocorrelation (red) vs. the even subpacket 
autocorrelation (blue) during a time frame that corresponds to the second 

revival for the full wave packet.  

Figure 5 shows the autocorrelation 
function of the full, even, and odd wave 
packets near the time of the second full 
revival. Note that this plot shows obvious 
evidence of a different revival time for 
even and odd subpackets. We also see that 
the peak in the full wave packet 
autocorrelation function is between the 
peaks of the even and odd autocorrelation 
functions and that the full wave packet 
peak is shorter than the even and odd 
peaks.  This provides evidence that the 
difference in even and odd revival times 
contributes to the deterioration of the full 
wave packet revivals.  

Figure 6 is a direct comparison of the 
numerically calculated revival times for 
even and odd subpackets.  Revival times 
are calculated by computing the time 
difference between consecutive full revival 
peaks in the autocorrelation function.   
There is a clear difference in the revival 
times of approximately 0.01 time units.  
Again, this strongly suggests that one 
reason for the deterioration of the revivals 
in the full wave packet is that the even and 
odd portions of the wave packet get out of 
sync as time passes. 

Direct Revival Time Comparison for Even and Odd Subpackets 

Figure 6. Even subpacket revival time vs. odd subpacket revival 

time. 

Other Findings and Future Research 

We found results similar to those for the n = 3 wave packet in wave packets centered on the n = 25 
and n = 50 states.  In both of these cases the full wave packet showed deteriorating revivals due, in 
part, to the even and odd subpackets getting out of sync.   

Another factor that affects wave packet revivals in the AISW is the fact that the revivals times are not 
integer multiples of the so-called classical period.  The classical period describes the time it takes for 
the peak of the wavepacket to complete one full circuit within the well, irrespective of any changes in 
the wave packet’s shape.  In the ISW the revival times occur at multiples of the classical period, 
ensuring that the wave packet is in the correct location within the well when it experiences a revival.  
In the AISW this relationship no longer holds and the wave packet may be in a different part of the 
well when it reaches a revival time.  As the revival times and classical periods get further out of sync 
the revivals of even and odd subpackets will deteriorate.  We believe this is the reason for the 
deterioration of revivals shown in Figures 3 and 4, but more research is required to show this 
quantitatively. 
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To examine the revivals of this wave packet we computed the autocorrelation function: 
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Ψ∗(x, 0)Ψ(x, t)dx.

� = 1, m = 1/2, a = 3, x0 = −a/2, and α = 1/4.
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