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Introduction & Model
• Goal: Study quantum-classical

correspondence in open, chaotic systems
• Model: Driven Inverted Gaussian

– In atomic units: V0 = 0.63, a = 2.65, w = 0.0925
– Study behavior for various values of e

• Prior to our work this model was known to
exhibit behavior similar to atomic
stabilization.



Atomic Stabilization
• Definition: Probability for atom in laser

field to ionize decreases as laser intensity is
increased.

• Evidence
– High-frequency approximation (Gavrila, et. al.)
– Simulations at high frequency (Eberly, et. al.)
– Experiments at high frequency (FOM, Rice)

• Classical vs. Non-classical: classical
dynamics may or may not exhibit
stabilization



Open, Time-Periodic Quantum
Systems

• Floquet Theory
– Because of the time-periodic driving field this

system has no energy eigenstates.
– Instead we characterize the system using the

eigenstates of the one-period time-evolution
operator, called the Floquet states.

– Eigenvalues are of the form e-iqT, where q is the
quasienergy and T = 2p/w is the period of the
driving field.



• Complex Coordinate Scaling
– Since the system is open, it can ionize.
– We can account for this by scaling the x-

coordinate by a complex phase factor.
– This makes the Hamiltonian non-Hermitian and

the quasienergies complex (q = W-iG/2, where
G is the photodetachment rate and t=1/G is the
lifetime of the state).

– We are interested in the resonance states
(localized, metastable Floquet states).

– To get accurate wavefunctions we must use
exterior complex coordinate scaling.



• Identifying
Resonance
States
– Floquet

eigenvalues of
continuum
states form a
spiral.

– Eigenvalues
of resonance
states lie off
the spiral.



• Husimi Distributions
– We would like to have

a phase-space picture
of these resonance
states to make
comparisons to the
classical phase space.

– Husimi distributions
are quasi-probability
distributions in phase-
space that conform to
the uncertainty
principle.



Creation of
Resonance States

• Results
– Number of resonance

states increases from 3
to 5 as e is increased
from 0.038 to 0.09 a.u.

– New states are light-
induced states.

– This is surprising
because you would
expect resonance states
to be destroyed as e is
increased.



• Original Explanation by
Ben-Tal, Moiseyev, and
Kosloff, J. Chem. Phys. 98,
9610 (1993).
– In the Kramers-

Henneberger frame (frame
of particle that oscillates
with driving field) the
potential well oscillates
back and forth.

– At high frequencies this
oscillating potential can be
approximated by the time-
averaged potential.

– Time-averaged K-H
potential gets wider and
admits more bound states as
e is increased.



• Classical Motion
– Stable island near

origin surrounded by
sea of chaotic ionizing
trajectories.

– Stable island gets
smaller as e is
increased.

– Shows that time-
averaged K-H potential
is not a valid
approximation for this
low frequency.

– Periodic orbits A, B, C,
and D, with period T.



• Scarred Resonance State
– One of the light-induced resonance states that is created as

e is increased has Husimi distributions that are peaked on
Orbit C.

– This state is a scar of Orbit C.  It can only be created once
the Orbit C has moved sufficiently far from the stable
island.



G and Lyapunov Exponent
– The continuous line shows the Lyapunov exponent (l) of

Orbit C, which measures rate at which nearby trajectories
move away.

– The data points show the photodetachment rate (G) of the
scarred state.

– Both decrease over a similar range of values as e is increased.
– For e > 0.13 a.u. the scarred state has the longest lifetime.



• Correlation of G and l
– Strong correlation over

all field strengths (R =
0.953).

– Best-fit line:
G = 1.505l - 0.010 a.u.

– Very linear in restricted
range with R = 0.993.

– Best-fit line:
G = 1.496l - 0.013 a.u.



Quantum-Classical Correspondence in
Atomic Stabilization

• At high frequencies, both classical and quantum
systems exhibit stabilization.

• At low frequencies classical system may not exhibit
stabilization, but quantum system can.
– Light-induced states may be scarred on unstable periodic

orbits.  These states have photodetachment rates that are
correlated with the Lyapunov exponent of the unstable
periodic orbit.

– If the Lyapunov exponent decreases with e, then the
scarred state will exhibit stabilization.

– If the scarred state has a photodetachment rate that is small
relative to other resonance states, its behavior may dictate
that of the system.



Summary
• Light-induced states may be created even as the

classical dynamics becomes increasingly unstable.
• These light-induced states may be scarred on

unstable periodic orbits.
• The photodetachment rate of a scarred state is

correlated to the Lyapunov exponent of the
periodic orbit on which it is scarred.

• These scarred, light-induced states may play an
important role in non-classical, low-frequency
atomic stabilization.


