Quantum-Classical Correspondence in Driven Open Systems

Todd K. Timberlake Berry College

Collaborators:	Linda Reichl (University of Texas) John Foreman (Berry / Duke)
References:	PRA 64, 033404 (2001)

PRL **90**, 103001 (2003)

Outline

- I. Introduction and Model
- II. Atomic Stabilization
- III. Open, Time-Periodic Quantum Systems
- IV. Creation of Resonance States
- V. Photodetachment Rate and Lyapunov Exponent
- VI. Quantum-Classical Correspondence in Atomic Stabilization
- VII. Summary

Introduction & Model

- Goal: Study quantum-classical correspondence in open, chaotic systems
- Model: Driven Inverted Gaussian

$$H = \frac{1}{2} \left[p - \frac{\varepsilon}{\omega} \sin \omega t \right]^2 - V_0 \exp \left[-(x/a)^2 \right]$$

- In atomic units: $V_0 = 0.63$, a = 2.65, $\omega = 0.0925$

– Study behavior for various values of $\boldsymbol{\epsilon}$

• Prior to our work this model was known to exhibit behavior similar to atomic stabilization.

Atomic Stabilization

- Definition: Probability for atom in laser field to ionize *decreases* as laser intensity is *increased*.
- Evidence
 - High-frequency approximation (Gavrila, et. al.)
 - Simulations at high frequency (Eberly, et. al.)
 - Experiments at high frequency (FOM, Rice)
- Classical vs. Non-classical: classical dynamics may or may not exhibit stabilization

Open, Time-Periodic Quantum Systems

- Floquet Theory
 - Because of the time-periodic driving field this system has no energy eigenstates.
 - Instead we characterize the system using the eigenstates of the one-period time-evolution operator, called the Floquet states.
 - Eigenvalues are of the form e^{-iqT} , where q is the *quasienergy* and T = $2\pi/\omega$ is the period of the driving field.

- Complex Coordinate Scaling
 - Since the system is open, it can ionize.
 - We can account for this by scaling the *x*coordinate by a complex phase factor.
 - This makes the Hamiltonian non-Hermitian and the quasienergies complex ($q = \Omega - i\Gamma/2$, where Γ is the photodetachment rate and $\tau = 1/\Gamma$ is the lifetime of the state).
 - We are interested in the *resonance states* (localized, metastable Floquet states).
 - To get accurate *wavefunctions* we must use *exterior* complex coordinate scaling.

- Identifying Resonance States
 - Floquet
 eigenvalues of
 continuum
 states form a
 spiral.
 - Eigenvalues
 of resonance
 states lie off
 the spiral.

• Husimi Distributions

- We would like to have a phase-space picture of these resonance states to make comparisons to the classical phase space.
- Husimi distributions are quasi-probability distributions in phasespace that conform to the uncertainty principle.

Creation of Resonance States

- Results
 - Number of resonance states increases from 3 to 5 as ε is increased from 0.038 to 0.09 a.u.
 - New states are lightinduced states.
 - This is surprising because you would expect resonance states to be destroyed as ε is increased.

- Original Explanation by Ben-Tal, Moiseyev, and Kosloff, *J. Chem. Phys.* 98, 9610 (1993).
 - In the Kramers-Henneberger frame (frame of particle that oscillates with driving field) the potential well oscillates back and forth.
 - At high frequencies this oscillating potential can be approximated by the timeaveraged potential.
 - Time-averaged K-H
 potential gets wider and
 admits more bound states as
 ε is increased.

- Classical Motion
 - Stable island near origin surrounded by sea of chaotic ionizing trajectories.
 - Stable island gets smaller as ε is increased.
 - Shows that timeaveraged K-H potential is not a valid approximation for this low frequency.
 - Periodic orbits A, B, C, and D, with period T.

- Scarred Resonance State
 - One of the light-induced resonance states that is created as ε is increased has Husimi distributions that are peaked on Orbit C.
 - This state is a scar of Orbit C. It can only be created once the Orbit C has moved sufficiently far from the stable island.

Γ and Lyapunov Exponent

- The continuous line shows the Lyapunov exponent (λ) of Orbit C, which measures rate at which nearby trajectories move away.
- The data points show the photodetachment rate (Γ) of the scarred state.
- Both decrease over a similar range of values as ε is increased.
- For $\varepsilon > 0.13$ a.u. the scarred state has the longest lifetime.

- Correlation of Γ and λ
 - Strong correlation over all field strengths (R = 0.953).
 - Best-fit line:
- $\Gamma = 1.505\lambda 0.010$ a.u.
 - Very linear in restricted range with R = 0.993.
 - Best-fit line:

 $\Gamma = 1.496\lambda - 0.013$ a.u.

Quantum-Classical Correspondence in Atomic Stabilization

- At high frequencies, both classical and quantum systems exhibit stabilization.
- At low frequencies classical system may not exhibit stabilization, but quantum system can.
 - Light-induced states may be scarred on unstable periodic orbits. These states have photodetachment rates that are correlated with the Lyapunov exponent of the unstable periodic orbit.
 - If the Lyapunov exponent decreases with ε, then the scarred state will exhibit stabilization.
 - If the scarred state has a photodetachment rate that is small relative to other resonance states, its behavior may dictate that of the system.

Summary

- Light-induced states may be created even as the classical dynamics becomes increasingly unstable.
- These light-induced states may be scarred on unstable periodic orbits.
- The photodetachment rate of a scarred state is correlated to the Lyapunov exponent of the periodic orbit on which it is scarred.
- These scarred, light-induced states may play an important role in non-classical, low-frequency atomic stabilization.