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One-dimensional, time-periodic systems are the simplest systems that can exhibit
classical chaos. The quantum versions of these systems are ideal for investigations
of how classical chaos affects quantum dynamics. These systems are also relevant
to recent experiments involving high-intensity, pulsed lasers. In this dissertation,
we investigate open and closed quantum systems driven by a periodic field. We
examine the phase-space structure of the Floquet eigenstates of these systems to
determine their relationship to classical phase-space structures. We observe the
effects of classical dynamics on the radiation spectra of these Floquet states and
their superpositions. We show how avoided crossings can lead to delocalization of
the Floquet states and illustrate how certain features of the classical motion can

prevent this delocalization. We show how resonance states in an open system are
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related to periodic orbits of the classical motion and how this relationship causes
the number of resonance states in one system to increase as the driving field is
increased. We examine how the phase-space structure of resonance states changes
as they are destroyed by coupling to the continuum and as they pass through an
avoided crossing. We also present a unified picture of the evolution of a closed
quantum system as its classical counterpart becomes chaotic and we point out that
modification of this picture is necessary to account for the phenomena observed in

open systems.
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Chapter 1

Introduction

Despite the phenomenal success of quantum mechanics since its introduction in the

0" Century, there are still some important aspects of the theory that are

early 2
not clearly understood as we begin the 21 Century. One of these aspects is that
of quantum-classical correspondence in systems whose classical dynamics is chaotic.
Chaos, as it is usually defined, cannot exist in quantum mechanics. The concept
of exponentially divergent trajectories that plays an important role in the classical
definition of chaos has no analog in quantum mechanics because trajectories are not
a well-defined concept in the quantum world. Because the Schrédinger equation is
a linear partial differential equation it cannot produce chaotic solutions. However,

quantum systems can exhibit many effects that are related to chaos in classical

systems. Understanding these quantum signatures of classical chaos is vital to fully



understanding the relationship between quantum and classical mechanics.

There are a number of ways in which the properties of a quantum system
can be related to the dynamics of its classical version. One approach is to relate
properties of the quantum eigenvalue spectrum to the behavior of classical trajec-
tories [1, 2]. Integrable systems with regular classical motion display an eigenvalue
spectrum that is random and the level spacings follow Poisson statistics. Systems
with chaotic classical dynamics have an eigenvalue spectrum that exhibits level re-
pulsion, which is characterized by avoided crossings between the eigenvalue curves
as a function of some parameter [3]. These avoided crossings change the distribution
of level spacings from one described by Poisson statistics to one described by the
statistics of random matrices [4].

Another way to study quantum-classical correspondence is to relate properties
of the eigenfunctions of the quantum system to the classical dynamics. Quantum
eigenstates can exhibit localization in phase space that is related to the presence
of either Komolgorov-Arnol’d-Moser (KAM) tori or Cantori (broken KAM tori) in
the classical phase space [5, 6]. However, quantum eigenstates can also exhibit a
dynamical localization, similar to Anderson localization in disordered systems [7],
that is not related to barriers in the classical phase space [8]. The localization
of quantum eigenstates influences the statistics of the eigenvalue spectrum [9] and

it has been proposed that avoided crossings lead to the delocalization of quantum



eigenstates, just as they lead to a change in the eigenvalue statistics [10]. One goal of
this work is to examine the relationship between avoided crossings and the structure
of quantum eigenstates.

To gain a more detailed understanding of the relationship between quantum
and classical dynamics one would like to identify how individual quantum eigenstates
are related to classical trajectories. This can be accomplished for integrable systems
through Einstein-Brillouin-Keller quantization [11]. For fully chaotic systems a re-
lationship between the complete quantum eigenvalue spectrum and the set of all
(unstable) periodic orbits has been established with the Gutzwiller Trace Formula
[12]. The phenomenon of scarring, in which quantum eigenstates appear to have
probability peaks associated with classical periodic orbits, seems to demonstrate
a connection between periodic orbits and the structure of quantum wavefunctions
as well [13]. Another goal of this work is to investigate the relationship between
periodic orbits and quantum eigenstates. In particular, we wish to study the way
that this relationship changes as the system undergoes a transition from regular to
chaotic behavior.

To investigate these aspects of the quantum-classical correspondence, we
choose to study one-dimensional potential wells driven by a strong periodic force.
This choice is motivated by the recent development of pulsed lasers with extremely

high intensities. The electric field generated by these lasers is comparable to the



electric fields generated within an atom by the atomic nucleus. This leads to a
number of interesting effects that are not predicted by perturbation theory, such as
above-threshold ionization [14], high harmonic generation [15] and atomic stabiliza-
tion [16, 17]. Simple one-dimensional models have been shown to reproduce much
of the interesting behavior of strongly driven systems [18]. Furthermore, the clas-
sical dynamics of these model systems becomes chaotic as the strength of the field
is increased, so by studying these systems we not only gain insight into quantum-
classical correspondence but also gain an understanding of the dynamics underlying
these new phenomena.

We begin our investigation of these systems in Chapter 2 by introducing a
simple model that consists of an infinite square well driven by a periodic field. We
examine the structure of the quantum eigenstates of this system and relate these
eigenstates to particular regions of the classical phase space. The radiation spectrum
produced by this system is influenced by the structure of these eigenstates and we
show how some properties of the spectrum, such as the cutoff in the generation
of high harmonics, is ultimately determined by the classical dynamics. We also
examine how avoided crossings in the eigenvalue spectrum of this system can result
in population transfer as the strength of the driving field is ramped up from zero.
This population transfer can increase the high harmonic generation in the system.

In Chapter 3 we carry out a more detailed study of the avoided crossings in



the system introduced in Ch. 2. In particular, we examine how the structure of the
quantum eigenstates changes as the system passes through an avoided crossing in
the eigenvalue spectrum. We examine two types of avoided crossings: an isolated (or
sharp) avoided crossing in which only two states are involved, and an overlapping
(or broad) avoided crossing in which more than two states are involved. Overlapping
avoided crossings have a profound effect on the structure of quantum eigenstates,
while isolated crossings have only a transient effect. We also investigate how these
structural changes lead to changes in the radiation spectra produced by individual
quantum eigenstates.

The same system is studied in Chapter 4, but in this chapter we are concerned
with how the quantum system as a whole changes when the strength of the driving
field is increased. We use the concept of information entropy as a measure of the
localization of a quantum state, and we illustrate how overlapping avoided crossings
lead to an overall increase of entropy in the system. There are a few states, though,
that persist in being localized even at relatively high field strengths. We examine
the classical dynamics that underlies this localization. At the end of Chapter 4
we discuss the relationships between avoided crossings, localization, and changes in
eigenvalue statistics in order to present a unified picture of the evolution of this type
of quantum system as the corresponding classical dynamics changes from regular to

chaotic.



We extend our analysis to open systems in Chapter 5 through the use of
complex scaling techniques. The system we study consists of an inverted Gaussian
potential driven by a periodic field. This system shows an increase in the number
of quasibound states as the field strength is increased. This phenomenon may be
related to atomic stabilization, and we show that it is the result of the scarring of
the quasibound states on periodic orbits of the classical system. We end this chapter
by closely investigating the structure of two quasibound states as they pass through
avoided crossing with each other.

In Chapter 6 we present another simple open system, the time-periodic Rosen-
Morse system. The number of quasibound states in this system decreases as the field
strength is increased. We examine the phase space structure of these states as they
are destroyed and show that their destruction is the result of strong coupling to the
continuum. This strong coupling to the continuum is related to resonant photon
absorption. We end this chapter by examining the structure of a quasibound states
as they pass through an avoided crossings with the continuum.

In Chapter 7 we will summarize our findings and discuss how they are related
to each other and to the general problem of “quantum chaos”. This conclusion is
followed by three short appendices discussing Floquet theory, Husimi distributions,

and the relationship between the length and radiation gauges.



Chapter 2

Harmonic generation in the

driven square well

In this chapter we will examine the Floquet eigenstates (see Appendix A) of a
quantum system to determine how they are related to the classical dynamics of the
corresponding classical system. The model we will use to carry out this study is
that of a particle confined to an infinitely deep square well and driven by a time-
periodic field. We choose this model because it is representative of a class of systems
whose potential is of the form V(z) = 2" for n > 2 (it is the n — oo limit of this
form). Any classical system of this type will develop non-linear resonances at low
energies when it is driven by a periodic force. These resonances can overlap and

create a region of chaos that is bounded from above [19, 20]. The quantum versions



of these systems also have features corresponding to classical non-linear resonances
[21]. These structures have important effects on the radiation spectra of the system.

This model may also be relevant to recent experiments [22]. In particular, the
infinite square well serves as a simple model for recent experiments on electron con-
finement in GaAs/AlyGa;_xAs quantum wells [23, 24]. These experiments confine
electrons in wells that vary in width from 50 to 1000 A and in depth from 200 to
300 meV. A well with a width of only 50 A and a depth of 300 meV contains only
a few bound states and therefore cannot be expected to produce the effects seen in
this study. However, a well with a depth of 300 meV and a width of 600 A contains
about 50 bound states. The dynamics of such a well, driven by a far-infrared laser
at low intensity, should be similar to the dynamics of our model. The parameters
we use roughly correspond to a laser with a wavelength of 400 gm and intensity of
about 105\/\7/Cm2 striking a 600 A well with a depth of 300 meV. These parameters

are well within the range accessible by recent experiments.

2.1 Dynamics of the Driven Square Well

2.1.1 Classical dynamics

The Hamiltonian for the driven square well is:

~2
H=2L" 1y icoswol, 7| < a, (2.1)
2m



where m is the mass, p is the momentum, and Z is the position of the particle. The
width of the square well is 2a. The driving field has amplitude € and frequency Jy,
with # as the time coordinate. This Hamiltonian can be made dimensionless using

the scaling transformation introduced in [19], where H = He, i = za, p = pv2me,

E=¢

2|0

,t=tay/ 277”, and Wy = woi, / 5. This transformation introduces an arbitrary

unit of energy c. The scaled Hamiltonian (in units of ¢) is:
H = p* 4+ ex coswpt, |z < 1 (2.2)

where all quantities are now dimensionless.

Note that ¢ and wg are not independent parameters, since the transformation
(wo, €) = (wov/c, €c) produces the same dynamics (with a rescaling of the energy unit
c). Because of this scaling law we can choose an arbitrary wg, study the dynamics
as a function of €, and effectively analyze the dynamics for any set of (wg,€). In
this paper we choose wy = 80. Figure 2.1 shows strobe plots of this system (in
action-angle variables) for ¢ = 50, 320, and 1600.

The action and angle variables for this system are defined by J = 2|p|/7 and

6 = msign(p)(z+1)/2. Rewriting the Hamiltonian using these action-angle variables

we find,
mJ?  4e 1
H= 2 n;oo ) cos(nf — wot). (2.3)
n odd

Writing the Hamiltonian in this way reveals that the driving field induces an infinite

series of non-linear pendulum-like resonances in the classical phase space. The
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Figure 2.1: Strobe plots of the classical phase space for the driven square well.
Primary resonances overlap and form a bounded region of chaos as € is increased.
The M = 1 primary resonance is the large elliptical feature at J = 16 in the first
two plots. The line at § = 0 indicates the presence of a hard wall (§ =0 <> 2 = —1).
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primary resonances occur at values of the action variable given by JM = 2wo/(Mn?).
The width of each primary resonance can be derived by approximating the motion
in each resonance region as the motion of a pendulum and finding the width of the

pendulum’s separatrix. This gives

4+/2¢

Adu = 5.

(2.4)

From these equations we see that two neighboring resonances will overlap when
Jar — Jar+2 = Adar + AJar4o. This is the well-known Chirikov overlap criterion
[25]. From this we find that the critical field strength at which the M and M + 2
resonances overlap is given by

2
“o

€y = M+ ) (2.5)
When resonances overlap, motion in the region of phase space in which the overlap
occurs will become chaotic. Because all high-order resonances occur at very low
values of the action, widespread chaos will occur in this system only when the two
highest energy resonances (the M =1 and M = 3 resonances) overlap. According
to the Chirikov criterion this should occur around ¢ = 200. However, the Chirikov
overlap criterion is known to overestimate the field strength needed to produce chaos,
so widespread chaos may occur at field strengths less than € = 200.

We will now examine some strobe plots of the classical motion in this system

for three different values of ¢. These strobe plots are shown in Figure 2.1. The

11



M = 1 resonance is apparent in all of the strobe plots in Figure 2.1. The M =3
resonance is visible only in the ¢ = 50 plot. For ¢ = 320 and 1600 all of the primary
resonances have overlapped and all but the M = 1 resonance have been destroyed.
Note that the M = 1 resonance cannot overlap with any higher energy primary
resonances because there are no primary resonances with a higher energy. Thus,
for very high values of J the phase space will remain regular at all field strengths.
This leads to “bounded chaos” in the system. We will show that this structure has

a profound effect on the dynamics of the corresponding quantum system.

2.1.2 Quantum dynamics

The Schrodinger equation for a driven particle in an infinite square well is given by

ih%|¢(f)> = —h—% + E(t)F cos(ot) (2.6)

where |Z] < a. All parameters are defined as in the classical Hamiltonian above,
except £(t) which is the turn-on function for the laser field. The transformation to
dimensionless coordinates is identical to that used for the classical Hamiltonian, ex-
cept that instead of scaling p we must scale h. The resulting dimensionless equation
is

2

m%h/)(t)) = (—/@2% +&(t)z cos(wot)) |1 (t)) (2.7)
where energy is measured in units of ¢ (as in the classical case) and k = h/(av/2mec).

Note that in the quantum system there are three parameters: ¢, wg, and k. Only

12



two of these parameters are independent, so the full dynamics of this system can
be studied by varying two parameters. In this paper we will only vary one of the
parameters, €, and we set kK = 1 and wg = 80 as above. The effect of varying & is
left for future study.

We will use the eigenstates of the undriven infinite square well to analyze the
Schrédinger Equation for this system. The Hamiltonian for the undriven infinite
square well is Hy = p?, where |z| < 1. The boundary conditions for the eigenstates
of Hy are ¥(—1,t) = 9¥(1,t) = 0 where ¢(z,t) = (z|¢(t)). The energy eigenvalues
of Hy are

E, = L n=1,2,... (2.8)

and the corresponding wavefunctions are given by

mn(z —1)

() = (2| ) = sin(CHE=) (2.9)

where |F,,) represents the eigenstate whose eigenvalue is £,. The dipole matrix

elements for these eigenstates are

0, [m+mn] (mod2)=0
Tom = (2.10)

where (mod 2) stands for “modulo 2”7. This form is very convenient for numerical
calculations.

Writing the wavefunction in the energy basis (|1(t)) = >, ¢i(t)|E;)), one can

convert the Schrodinger Equation into a system of ordinary differential equations

13



for the ¢;’s:

dc;it) _ ZEZ ci(t) + %ef(t) cos(wot) injc]-(t). (2.11)

J

This system can be numerically solved for any initial condition. The radiation
spectrum is simply the Fourier transform of the acceleration, and the acceleration

time series is given by

@)l (1) =) ¢t ici(t) (2.12)

]

where

, 1
§i = —E(Ej—EZ»)%ﬁ (2.13)

—}—%ef(t) cos(wot) zk:(QEk — B — E)zjpeg
is the “acceleration matrix element”.

We use a basis of the first 80 eigenstates of Hy, which extends well into
the regular region for all of the field strengths we will consider. All spectra were
calculated using 128 cycles of the field after the end of the initial turn-on period.
Note that since parity is a good quantum number for this system there will be no

radiation at even harmonics of the driving field.

2.2 Radiation Spectra

In time periodic quantum systems the radiation spectrum is determined by which

Floquet states (see App. A) are excited. Certain superpositions of Floquet states

14



can lead to high harmonic generation while other superpositions produce no high
harmonics. To illustrate how a superposition can lead to efficient high harmonic
generation we will briefly examine the radiation spectrum from a superposition of
two Floquet states, one localized at high energy and the other at low energy. Husimi
plots of these states are shown in Fig. 2.2. We will write the wavefunction of the

superposition as
[$(8)) = aae™ Q1)) + age™" " |Qs(1)), (2.14)

where |a,|? 4 |ag|? = 1 and |Q(¢8)) = |Q(E+T)).

The time-dependent dipole expectation value for this superposition is

@WlzPt) = laal*(Qu®)]|Qu(t) + las]*(Qa(t)|2]Qps(1))  (2.15)
tafape P 0NQ, (1)]2]Q5(1)

Fafane @0 Q1) 2] (1)),

Each Floquet state can be written as a time-dependent superposition of unperturbed

energy eigenstates such that
et (t Zcm e Eit E5) (2.16)
and

e G EHQ (1) ] Qs (t) Z% Jers(t)e' N E |2 | Ey). (2.17)

15
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Figure 2.2: Husimi plot showing the two states in the superposition. |Q33) is pri-

marily composed of the n = 32 energy eigenstate, while |€50) is composed mainly
of n = 50.
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The first two terms in (2.15) correspond to the dipole value if the system was
in a single Floquet state, [Q,(t)) or |Qg(t)). If weset § = avin (2.17), we can see from
the left-hand side of that equation that a single Floquet state radiates only at the
harmonics of the driving field, because (Q,(t)|z|Q,()) is a periodic function with
period T'. Looking at the right-hand side of (2.17) shows that the range of harmonics
at which a Floquet state will radiate is determined by the range of unperturbed
energy eigenstates over which that Floquet state has support, provided only that
the ¢;,(t)’s are weakly time dependent (which is the case for Floquet states in this
system). If the Floquet state is spread over a wide range of energies, then these
terms can contribute HHG. If the Floquet state is confined to a narrow band of
energies there will be no HHG. Figure 2.2 shows two Floquet states that lie in the
regular region of the phase space for the driven square well at ¢ = 50. Radiation
spectra for each of these states are shown in Figs. 2.3a and 2.3b. It is clear that, as
predicted, these states do not generate high harmonics.

The last two terms in (2.15) are cross terms that correspond to transitions
between the two Floquet states. Transitions between Floquet states give rise to
radiation at frequencies nwg £ (€2, — Qg). If the two Floquet states have support on
widely separated sets of energy eigenstates, then these terms can lead to HHG (at
shifted harmonics). An example of this is shown in Fig. 2.3¢c, which shows the radia-

tion spectrum for a superposition of the two states shown in Fig. 2.2. Note that one

17



log;o ‘X(w)|2 (arb. units)

logy, |X(w)|2 (arb. units)

logg |x(w)|* (arb. units)

0 10 20 30 40 50 60
w/wg

Figure 2.3: Spectra for (a,b) individual Floquet states and for (c) a superposition of
two states. The location of the cluster of peaks in (¢) is determined by the separation
in energy of the Husimi distributions in Fig. 2.2.
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of these Floquet states has most of its support on the n = 32 energy eigenstate and
the other Floquet state is concentrated near n = 50. We expect the superposition to
radiate at frequencies corresponding to the difference in these energies. For wy = 80
this is near the 45" harmonic, which is exactly where the cluster of peaks in Fig.
2.3c appears. The width of this cluster is determined by the range of energies over
which the two Floquet states have support. Close inspection of the peaks in Fig.
2.3c shows that they are all shifted by 0.477 from the odd harmonics. This agrees
with our expectations since the difference in the quasienergies of the two Floquet
states (divided by wp) is (€232 — Q50)/80 = (46.712 — 8.526) /80 = 0.477.

The preceding example is artificial in the sense that the superposition of Flo-
quet states that was used is not one that could arise naturally in our system. We
will now examine what happens when our system, initially in a single eigenstate of
the undriven quantum square well, is subjected to a driving field. The driving field
will turn on slowly until its maximum field strength, e, is achieved. We examine the
harmonic generation in this system for two values of the maximum field strength.
At each field strength we calculate the radiation spectrum, and Floquet composition

at the end of the turn-on, for several initial states.
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2.2.1 Strong field

The classical phase space for field strength ¢ = 320 is chaotic for actions less than
about 25. However, in the middle of this chaotic sea there is a prominent resonance
from 12 to 22 in action, and about -1 to 1 in angle. Above J = 25 the phase space
is regular.

We compute the radiation spectrum of the quantum system for three different
initial conditions, n = 3, n = 16, and n = 35. This allows us to study the quantum
behavior for states that sit in the chaotic, resonance, and regular regions of the
classical phase space. For this field strength we use a 12 cycle turn-on. The radiation
spectrum for each initial condition is shown in Figure 2.4.

For initial state n = 35 we see that there is no high harmonic generation. The
radiation spectrum is typical of what we might find using perturbation theory at
weak field strengths. Nearly all radiation occurs at the fundamental frequency wy.
After computing the Floquet eigenstates for this field strength we can decompose
the wavefunction at the end of the laser turn-on in the Floquet basis. For initial
state n = 35 we find that only one Floquet state is excited at the end of the turn-
on. The Husimi distribution (see Appendix B) of that Floquet state is shown in
Figure 2.5a. (Note that this and all Husimi distributions for this system should
go to zero at # = 0 since this corresponds to 2 = —1. Because of the smoothing

involved in creating the Husimi distribution there appears to be nonzero probability
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Figure 2.4: Spectra for the driven square well at ¢ = 320. These three spectra are
typical for initial conditions starting in the three regions of classical phase space: (a)
regular, (b) resonance, and (c) chaotic. The cutoffs for (b) and (c) are determined
by the range of energies a classical particle in each region can sample.
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at # = 0 even though the wavefunction goes to zero there.) It is clear that the
Husimi distribution closely follows the invariant tori that appear in the regular part
of the classical phase space. We will call such a state a “regular” Floquet state.
These states are typically excited for initial conditions that begin in the regular
part of the classical phase space. Since these states produce no HHG, this region
will be of little interest to us here.

For initial state n = 16 the radiation spectrum (Figure 2.4b) is quite different.
There does appear to be a plateau in the spectrum running out to about the 11*"
harmonic. However, the harmonic peaks do not show up clearly. There are a number
of additional peaks (shifted harmonics) that make the spectrum very messy. At the
end of the turn-on only about 13 Floquet states are excited above the level of 0.1%.
As discussed earlier, this leads to shifted harmonics because the system can radiate
at frequencies nwg + (2, — Q23), where Q, and Qg are quasienergies associated with
the excited Floquet states. If N Floquet states are excited there will be (N — 1)!
possible values of (£, — Qg). For 13 states this means nearly 10° possible shifted
peaks for each harmonic! Tt should be noted, however, that 80% of the probability
lies in three Floquet states. The Husimi distributions for these Floquet states are
shown in Figure 2.5(b-d). These three states are all localized within the primary
resonance.

Now for initial state n = 3 we see from Figure 2.4c that there is strong
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Figure 2.5: Husimi plots of Floquet states for the driven square well at ¢ = 320.
Each state can be associated with a particular region of the classical phase space:
(a) regular, (b-d) resonance, and (e,f) chaotic.
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harmonic generation. The cutoff in the spectrum appears to be at about the 19

harmonic. There are a few shifted peaks, but no so many as to obscure the harmonic
peaks. At the end of the turn-on there are two Floquet states that are significantly
excited. We see that the Husimi distributions of these Floquet states, shown in
Figures 2.5e and 2.5f, are concentrated in the chaotic region of the classical phase
space. One of these is localized near J = 0 (the bottom of the well) while the other
is localized near the unstable fixed point at J = 15. This combination gives the
quantum system access to energies spanning the chaotic region.

For the combination of Floquet states arising from n = 3, one would expect
transitions to occur whose energy difference is equal to the energy range of the
chaotic region (AE = 72(25% — 0%)/4 = 1542) or less. So the cutoff in the harmonic
generation should occur at AE/wg = 1542/80 ~ 19, which is exactly what we see
in Figure 2.4c. For the “resonance” Floquet states arising from n = 16 one would
expect the cutoff to be given by the energy range of the resonance divided by wy.
We find AF,.s = m2(22% - 12%) /4 = 839 and AFE,.;/Q = 839/80 ~ 10.5 which again

fits the spectrum in Figure 2.4b.

2.2.2 Very strong field

At a field strength of ¢ = 1600 the classical phase space is chaotic below J = 40, as

seen in Iigure 2.1c. There is a small resonance still present near J = 22, as well as
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some tiny secondary resonances, but all of these structures are small compared to k
(the effective i) in the quantum system. We cannot expect these structures to have
an impact on the quantum dynamics of the system. Above J = 40 the phase space
is regular.

We study this field strength using initial conditions n = 3 and n = 22. We
omit the results for n > 40 because they are identical to the “regular” results for
€ = 320 (see Figures 2.4a, 2.5a). The turn-on for this field strength is 60 cycles,
which gives the same adiabaticity as the 12 cycle turn on for e = 320.

Starting off in n = 3 we find the spectrum shown in Figure 2.6a. At low
frequencies the radiation spectrum resembles “white noise”. This is because of the
large number of shifted peaks which wash out the harmonics. The system passes
through many avoided crossings (see Sec. 2.3) during the turn-on, resulting in the
excitation of many Floquet states. There appears to be a cutoff at about the 50th
harmonic. We show the Husimi distributions of two of these Floquet states in
Figures 2.7a and 2.7b. While the state shown in 2.7a appears to be concentrated
near the location of the small resonance (although certainly not inside it), the state
in 2.7b is spread throughout the chaotic region. This is somewhat different from
the localized “chaotic” Floquet states at ¢ = 320. However, at this higher field
strength it is typical for the “chaotic” Floquet states to fill the chaotic region. This

delocalization occurs for Floquet states that have passed through many avoided
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crossings (see Chapter 3). Again we see that the size of the chaotic region determines
the cutoff as AE = 72(40% — 0)/4 = 3948 and AF/wy = 3948/80 ~ 49, which agrees
well with what we see in the spectrum.

At n = 22 we are close to the energy of the small resonance. However, we see
that the spectrum for this initial condition (Figure 2.6b) looks very similar to the
one for n = 3. Again we find that there are many Floquet states populated. Husimi
plots for two of these are shown in Figures 2.7c and 2.7d. It is clear that these states
are not concentrated inside the small resonance. This is because the resonance is
small compared to the size of k in our calculations. The quantum system effectively
ignores the presence of the resonance. Instead, the system populates delocalized
“chaotic” Floquet states, as for n = 3. Again, the cutoff matches the energy range

of the chaotic region.

2.2.3 General properties

From the above analysis we derive some basic properties of the radiation spectrum
for this system. First, states that start out in a regular region of the classical phase
space will remain localized in this region. They will typically only excite a single
Floquet state whose Husimi distribution is concentrated around a classical invariant
torus. Such a state will produce no HHG.

A state initially inside a large (relative to k) resonance will typically excite
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Figure 2.6: Spectra for the driven square well at ¢ = 1600. Although (b) starts off
in the resonance region, the resonance at this field strength is too small to influence
the quantum dynamics. The cutoffs for both spectra are given by the energy range
of the chaotic region.
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Figure 2.7: Husimi plots for driven square well Floquet states at e = 1600. At this
high field strengths the Floquet states broaden to fill the region of chaos.
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numerous Floquet states. This large number of Floquet states leads to a noisy
spectrum with many shifted peaks. However, most of the probability will be in
Floquet states that are localized in or near the resonance region. This leads to a
cutoff in the spectrum that is determined by the width (in energy) of the resonance.

An initial condition in the chaotic region will excite “chaotic” Floquet states.
At lower field strengths these “chaotic states” seem to be localized near a particular
unstable periodic orbit of the classical system. Only a few of these localized states
will be excited, which leads to a clean harmonic spectrum. At very high field
strengths the “chaotic” Floquet states will have Husimi distributions that fill the
chaotic region. These delocalized states have become associated with a large set
of periodic orbits of the classical system. This occurs when the system has passed
through many avoided crossings during the turn-on. These avoided crossings lead
to the excitation of a large number of Floquet states and a white noise radiation
spectrum. In either case the cutoff is given by the energy range of the chaos, which
can be quite large.

In all of these cases the cutoff in the HHG is determined by the range of
energies that the classical particle can sample during its trajectory. This result is in
agreement with [26]. It is also similar to other cutoff laws (like those invoking the
ponderomotive potential [27] or the Rabi frequency [28]) because the cutoff is just

given by the maximum energy that the classical particle can gain from the field. For
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a state that is initially in a chaotic region we can predict the cutoff by examining a
strobe plot of the classical dynamics. Table 2.1 shows the cutoffs seen in the spectra
and the energy range of the chaos seen in the strobe plots. The observed cutoffs
follow the strobe plot predictions very closely.

Note that the table includes data from field strengths that are not discussed
elsewhere in this paper. The uncertainties in the cutoff values read from the spectra
are worse for high field strengths because these spectra tend to be noisy and difficult

to read.

2.3 Avoided Crossings

From the above analysis it is clear that the best way to generate high harmonics
is to excite chaotic Floquet states. To get sharp peaks at the harmonics (i.e. few
shifted harmonics), one should excite as few Floquet states as possible [29]. Ideally
one would like to excite a single chaotic Floquet state, but it is nearly impossible
to excite only one such state. Another alternative is to excite a superposition of
two states that sit at high and low energies, respectively. Avoided crossings in the
Floquet spectrum provide the opportunity for transitions between Floquet states
[30], and hence a method for engineering a particular combination of Floquet states.
A quantum system that is initially in a single Floquet state can transfer some of

its probability to another Floquet state during the turn-on of the field if the initial
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€ Observed Strobe

50 942 11

Q

150 I5b£2 15

Q

320 19£2 19

Q

960 350+ 2 37

Q

49

Q

1600 49+ 4

2560 3+4

Q

74

Table 2.1: Observed harmonic cutoffs and predictions based on classical strobe plots
for several field strengths ¢. Uncertainties in the observed cutoffs are large for very
strong fields because these spectra have many shifted peaks, making them difficult
to read.
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state has an avoided crossing with another state between ¢ = 0 and the final value of
¢ achieved by the field at the end of the turn-on. This can result in a superposition
of Floquet states that covers a broad range of energy, even if the individual Floquet
states that compose the superposition are all localized.

We have seen that a superposition of Floquet states that covers a broad range
of energy can produce HHG. Now we will examine how such superpositions can be
created during the turn-on of the driving field. In Figure 2.8 we plot the quasiener-
gies of our system for field strengths of 0 to 400. Up to the critical field strength
for overlap of the two highest energy primary resonances in this system, ¢ = 200,
there are few avoided crossings (where two curves approach, but do not cross each
other). However, after this point the avoided crossings arise quickly. At even higher
field strengths almost every curve undergoes a rapid succession of many avoided-
crossings. The proliferation of avoided crossings is associated with the spread of
chaos in the classical system. One of the first avoided crossings occurs at a field
strength of € &= 100. This value of € is less than €7, but as mentioned earlier the value
of €] is an overestimate of the field strength that is required to create widespread
chaos in the classical phase space [19, 20]. This first avoided crossing involves states
connected to n = 6 and n = 10 (labeled Qg and €249 in Fig. 2.8). We note that these
pairs are symmetric about n = 8, because J = 8 is precisely where the classical

resonances overlap at the critical field strength. This indicates a strong connec-
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tion between avoided crossings in the Floquet spectrum and overlap of nonlinear
resonances in the classical phase space.

Figure 2.8 shows only the quasienergies of the lowest 40 states in our basis.
Using a finite basis to calculate quasienergies always introduces numerical error
[31], but for the field strengths shown this error is extremely small. At higher field
strengths one would need to use a larger basis to avoid numerical error. Essentially
one can avoid numerical error as long as the basis extends well into the regular
region of the phase space. Since our calculations use states up to n = 80 we will not
experience numerical error until the chaotic region comes near J = 80, which is not
the case for any field strengths we consider here.

It is important to note that there are many places, particularly at small values
of €, where the quasienergy curves actually cross. This happens when the two states
associated with the curves belong to different (uncoupled) sectors of the Hilbert
space and transitions between these states are forbidden [3, 30]. By different sectors
of Hilbert space we mean that the two states belong to different blocks of a block-
diagonal Hamiltonian, indicating that they belong to different symmetry groups.
When € is small these “apparent crossings” are quite common, but at large ¢ there
are few apparent crossings. The reason for this is that the spread of chaos is due to
the breaking of the same symmetries that prevent coupling of certain states.

Avoided level crossings provide one of the two mechanisms available for pop-
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Figure 2.8: Plot of quasienergies as a function of field strength for the driven square
well. Curves associated with resonance states (i.e. 15 and €414) resemble eigen-
curves of the Mathieu equation [32]. The avoided crossing discussed in the text is
between Qg and Q19 at ¢ =~ 100.

34



ulation transfer between Floquet states. The other mechanism is a non-adiabatic
turn-on of the driving field. If the field is turned on rapidly, transitions between
Floquet states will be allowed because the Floquet states at one field strength will
not be Floquet states at another field strength. A rapidly varying field strength
leads to rapid changes in the structure of the Floquet states and thus to transitions
between Floquet states. However, if the field is turned on adiabatically the sys-
tem will remain in the same (continuously connected) Floquet state until it reaches
an avoided crossing. We will confine our investigation to population transfer that
occurs at the avoided crossing between €2g and €219 at € = 100.

To study this avoided crossing we start with the system in » = 6 and inves-
tigate the behavior of the system for field strengths below and above the avoided
crossing. At € = 65 the state is composed of 98.6% |€26) and 1.4% |Q10) at the end
of its turn-on. At ¢ = 125 we are mostly through the avoided crossing and the state
is composed of 72.5% |Q10) and 27.5% |Q). Spectra shown in Figure 2.9 show an
increase in HHG as the system traverses the avoided crossing. This indicates that
population transfer “spreads” the wavefunction over a wider range of energies.

Avoided crossings increase HHG in two ways. The first way is by creating a
superposition of Floquet states that occupy different regions of phase space. This
superposition will typically be spread over a wide range of energies, which leads to

the plateau structure that is observed in the radiation spectra. In the next chapter
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Figure 2.9: Spectra for the driven square well with initial condition n = 6. The
avoided crossing between g and €21¢ occurs between these two field strengths. Note
the increase in HHG after the system has passed through the avoided crossing.
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we will see that avoided crossings are associated with the creation of delocalized
states, which also leads to an increase in HHG. After a state passes through many
avoided crossings it will lose the close association it had with a single small region
of phase space and become associated with a much larger region of phase space. At
very high field strengths states are typically spread throughout the chaotic region,

which allows these states to radiate at very high harmonics of the driving field.
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Chapter 3

Changes in Floquet-state

structure at avoided crossings

In the previous chapter we saw that avoided crossings can lead to population transfer
during the turn-on of the driving field, creating a superposition of Floquet states that
can radiate at high harmonics. In this chapter we will examine avoided crossings in
more detail, focusing on how avoided crossings lead to the delocalization of Floquet
states. A connection between level repulsion (avoided crossings) and the creation of
extended (delocalized) states has already been found [33, 34]. However, these studies
look at statistical properties of the system as a whole. Here we will concentrate on
the changes in the structure of individual quantum eigenstates at a single avoided

crossing. We identify two distinct types of avoided crossings which have different
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effects on eigenstate structure. One type of crossing produces significant changes in
the eigenstates only for the parameter values at which the avoided crossing actually
occurs. The second type results in structural changes that persist for parameter
values that are beyond the avoided crossing. Finally, we will investigate what impact

these structural changes have on the radiation spectrum of the system.

3.1 Classical and Quantum Dynamics

Asin Chapter 2 we will use the driven particle in an infinite square well as our model.
Section 2.1 contains a detailed account of the classical and quantum dynamics of
this model. However, since the field strengths we use in this chapter are different
from those used in Chapter 2, we show two new strobe plots in Figure 3.1. The
strobe plots show the classical phase space of our system for ¢ = 174 and ¢ = 780.
The most important features of each strobe plot are the bounded region of chaotic
motion at low energies, and the M = 1 primary resonance which is the elliptical
island that lies within the chaotic sea in both strobe plots. Note that at ¢ = 780 the
resonance island is distorted and much smaller than at e = 174. As € is increased in
this system the chaotic region spreads slowly to higher energies and the resonance
island shrinks until it finally disappears.

All of the quantum simulations discussed in this chapter use a basis of 80

eigenstates of the undriven square well. For k = 1 this basis extends well into the
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Figure 3.1: Strobe plots of the classical dynamics of the driven square well at two
field strengths. J and # are the dimensionless action-angle variables for the undriven
square well. In (a) e = 174 and the M = 1 primary resonance is a prominent elliptical
feature centered at # = 0, J = 16. All higher-order resonances have been destroyed
at this field strength. In (b) ¢ = 780 and the M = 1 resonance is distorted and
occupies a smaller region of phase space than at € = 174. The chaotic region is
much larger at this higher field strength.
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regular region of phase space for all values of € considered here. As long as the
quantum basis extends into the regular region it should give an accurate description
of all dynamics in the chaotic part of the phase space, since there is little coupling

between states in the regular region and states in the chaotic region [31].

3.2 Chaos and Avoided Crossings

We wish to study the quantum dynamics that takes place near an avoided crossing
(AC) in the spectrum of quasienergies for this system. Our first step then is to
locate some avoided crossings. Figure 3.2 shows the (mod wy) spectrum of the 40
lowest quasienergies as a function of €. As mentioned in Section 2.3, there is a close
connection between the onset of ACs and chaos in the classical system. Figure 3.2
shows that avoided crossings begin to appear between ¢ = 100 and ¢ = 200, and
by € = 800 the spectrum is dominated by avoided crossings. This compares well
with the growth of the chaotic region in the classical phase space between these two
values of € (see Fig. 3.1).

There are many strong ties between avoided crossings and chaos, beyond the
observed increase of ACs as the classical system becomes chaotic. Successive avoided
crossings are responsible for the transition to a random-matrix distribution [4], a
property which has long been associated with chaos. In fact, there is a strong

correlation between the overlap of these successive ACs and the fraction of the

41



700 800 900

0 100 200 300 400 500 600

R=
cx v
e =5
o w e a
=) < v
fdhm
2 + .5
aaOd
w o ?og
= . &
—_ = ®
< =
o= W
2 Il 2
< T
el
=
ue
o 98~
3 2 oG
RER
o Yoo =
= I
e e
< o 0
Q.=
€ a'm E
haS
+ o =
w u 5 B
S oY O
= Eg 9
Ssep
e%ds
.ﬂor.me
-0 > =
5] S -
£ 3T w o
732 ° %
0 5 g
= 2 9.5
Qamm
(- @]
S % =T
=a= R
EF ¢ &
2 o .a g
[ = e
T = 2
- g o
& .o 5
N = &
= 9 -
om0 M
N g 9 @
.end
3F.1.m.
-~
o 7 > =
g N =
22 52
N = < o &

42



classical phase space which is chaotic [35]. Other studies have shown that ACs
occur between two states only if a quantum wavepacket could tunnel through any
Kolmogorov-Arnol’d-Moser (KAM) tori that lie between the two states in the phase
space [36]. This means that the states involved in avoided crossings tend to lie
in regions of the phase space where the KAM tori have been strongly distorted or
destroyed altogether [23].

By studying Fig. 3.2 we can formulate a general picture of what is happening
to the quasienergy curves of this system as ¢ is increased. At low e there are no
avoided crossings and most of the quasienergy curves maintain a constant slope. The
only curvature here is in the set of curves that look like the characteristic curves of
the Mathieu equation [32]. The states associated with these curves are becoming
trapped in the pendulum-like M = 1 primary resonance that forms as ¢ increases
from 0. Husimi plots of states with these quasienergies are localized inside this
resonance (see Fig. 3.4b below). The curve that looks like the ground state of the
Mathieu equation is connected to the n=16 square well state at ¢ = 0. Note that
J = 16 is the exact position of the M = 1 resonance in the strobe plots of Fig. 3.1.
At higher values of ¢, ACs begin to appear. At the avoided crossing itself there is
a significant change in the slope of the quasienergy curves, but at these moderate
values of € the AC seems to result only in an exchange of slopes between the two

curves. At the highest values of ¢ shown in Fig. 3.2 the avoided crossings result
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in dramatic changes in the slopes of the quasienergy curves, not just an exchange
of slope. One may also note that the Mathieu curves are no longer identifiable at
these values of €. At these high values of ¢ the N = 1 resonance has become highly
distorted and is beginning to disappear into the chaotic sea (see Fig. 3.1b). Thus
we see that there is a strong connection between changes in the classical phase space

and changes in the quasienergy spectrum.

3.3 Changes in Floquet State Structure

This connection between chaos and quasienergy curves is interesting, but it is not
entirely clear. For one thing, only the connection between very large changes in the
classical phase space and correspondingly large changes in the quasienergy spectrum
has been established. We would like to study the changes that take place at a single
avoided crossing. Additionally, we would like to see changes in the structure of
the Floquet states, rather than changes in the quasienergy curves. We can use the
Husimi distributions of Floquet states to visualize these structural changes that take
place at an AC. We will examine the Husimi distributions of Floquet states at values
of € slightly less than, slightly greater than, and at the value at which that state
undergoes an AC. This will allow us to determine what changes occur at the AC
and to what extent these changes survive at higher values of e.

A close inspection of Fig. 3.2 reveals that not all avoided crossings look the
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same. As discussed in Sec. 3.2 there are crossings where the curves simply exchange
slopes and crossings where the slopes change. We will refer to the crossings that
exchange slopes as sharp ACs. The states involved in such an AC are weakly coupled
and usually lie in different regions of the phase space (inside a resonance and in the
chaotic region, for instance). The other type, broad ACs, involve strongly coupled
states that usually reside in the same region of phase space. In fact, most broad

ACs occur between states that are associated with the region of chaos.

3.3.1 Sharp Crossing

Figure 3.3 is a detail from Fig. 3.2 that focuses on a sharp avoided crossing at
€ = 175. The two curves that participate in the avoided crossing are labeled A
and B. In Fig. 3.4 we show the Husimi distributions of the two Floquet states at
€ = 170, 175.5, and 180. At ¢ = 170 we can see that state A is contained within the
n=1 primary resonance (see Fig. 3.1a for a picture of the classical dynamics near
this field strength) while state B lies in the low-energy chaotic region. At e = 175.5,
the center of the avoided crossing, the Husimi distributions for both states appear
to be mixtures of the states shown for ¢ = 170. Clearly the AC has a dramatic
impact on the structure of these states at this particular value of ¢. However, the
Husimi distributions at ¢ = 180 show that these changes do not persist at higher field

strengths. The two states simply exchange their structure, so that the net effect is a
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relabeling of the Floquet states. So away from the AC itself the overall structure of
the quantum phase space is unchanged. Others have found similar results in other
systems [37].

These dynamics can be understood quite well using a two-level approach [38].
These sharp ACs only involve the two Floquet states whose curves nearly come
together. The rest of the Hilbert space has very little influence on the structure of
these two states. Without any contribution from other states, these two levels can
only exchange their structure. These types of crossings play an important role in
tunneling, since a state originally confined to a resonance has become a chaotic state
after the AC [39], but they do not play a significant role in altering the structure of

the quantum phase space.

3.3.2 Broad Crossing

In a broad AC several states make significant contributions to the dynamics. A
particularly striking example of this is shown in Fig. 3.5, where two ACs (at € &= 750
and € & 765) actually overlap. Here there are three states (labeled C, D, and E) that
are strongly influencing each others’ dynamics. There is no simple exchange of slopes
between the curves in this AC. Hence, we might expect to find more interesting (and
permanent) structural changes in this crossing than in the previously studied one.

Figure 3.6 shows the effect of the avoided crossing on the structure of the three
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Figure 3.3: Detail from Figure 3.2 showing a sharp avoided crossing near ¢ = 175.5.
The quasienergy curves involved in the avoided crossing are labeled A and B.
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Figure 3.4: Husimi distributions of the Floquet states involved in the avoided cross-
ing shown in Figure 3.3. The labels A and B indicate the quasienergy curve in Fig.
3.3 with which each state is associated. The ¢ values indicate the field strength at
which the Floquet state was calculated. At ¢ = 175.5 (the center of the avoided
crossing) both Floquet states are mixtures of the two states at e = 170. By € = 180
A and B have exchanged their structure completely. Note that the coordinates for
all of the Husimi plots are the dimensionless action-angle variables used in Fig. 3.1.
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states that are involved. As in the sharp crossing there is a mixing of structures
for values of € that lie within the crossing region. However, in this case the changes
do not disappear when we look at larger values of field strength. With this type
of AC the states are not simply “relabeled”, but undergo actual changes in their
phase space structure. Particularly striking is the difference between Figs. 3.6¢ and
3.6h. These states would be identical if there was a complete exchange of structure
as seen in the sharp AC. Instead, before the crossing state E is localized at very low
energies, but after the crossing state D (which is the state most closely associated
with the low-e state E) has spread into the higher energy portion of the region
of chaos. The avoided crossing has delocalized this particular Floquet state. We
find this result to be quite general, that broad ACs lead to permanent changes in
the structure of Floquet states that tend to delocalize the states. Of course, since
the region of chaos is bounded the states can only delocalize until they reach the
boundaries of the chaos. At extremely high values of ¢, where nearly every “chaotic”
state has undergone many broad avoided crossings, we find that all of these states

are delocalized and fill the chaotic region [40].

3.4 Effect on Radiation Spectra

Now that we have seen how avoided crossings can affect the structure of Floquet

states we would like to see how they effect an experimentally observable quantity,
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Figure 3.5: Detail of Figure 2.8 showing a pair of broad avoided crossings near
¢ = 760. The three quasienergy curves that are involved in the avoided crossing are

labeled C, D, and E.
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Figure 3.6: Husimi distributions of the three Floquet states involved in the crossings
shown in Figure 3.5. The labels C, D, and E indicate the quasienergy curve in Fig.

3.5 with which each state is associated. At ¢ = 760 all three states are mixtures of

the states at ¢ = 740. By ¢ = 780 the states have exchanged most of their structure,
but there are significant differences from the ¢ = 740 states. In particular, we expect
the states (c¢) and (h) to have similar structure but instead find that (h) is much
less localized than (c).
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namely the radiation spectrum. In Chapter 2 we found that the generation of
high harmonics increased as the system, initially in a single Floquet state, passed
through an avoided crossing [40]. However, this effect was caused by population
transfer from the original Floquet state to another state as the field strength was
increased. This population transfer creates a superposition of two Floquet states
that displays increased radiation at high frequencies (albeit shifted away from the
harmonic frequencies). In this study we would like to focus on changes in the
radiation spectrum that are caused by the changing structure of a single Floquet
state. For this reason we will calculate radiation spectra by starting the system in a
single Floquet state and maintaining a constant field strength for 128 cycles of the
driving field. The expectation value of the acceleration for the state is calculated
during this time interval. We then calculate the Fourier transform, x(w), of this
acceleration time series. The square modulus of the Fourier transform gives us the
radiation spectrum. Because the Floquet states are periodic with period 27 /wy it
is not truly necessary to calculate for 128 cycles of the driving field. However, this
long integration time exposes numerical errors that might be hidden in a shorter
calculation.

To study the effect of structural changes on radiation spectra we cannot simply
study the spectrum of a single Floquet state for various values of €. Avoided crossings

cause states to exchange structure, effectively relabeling the states. If true structural
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changes are to be distinguished from simple relabeling, one must account for this
relabeling when comparing different spectra. At the midpoint of the avoided crossing
this is nearly impossible to do, since the relabeling has not fully taken effect. For
values of € that are beyond the AC, the relabeling can easily be taken into account.
Our procedure in the following is to calculate spectra for a state before the AC, the
same state (on the same curve) at the midpoint of the AC, and the relabeled state
(now on a different quasienergy curve) after the AC. This separates the changes in
the radiation spectrum that occur because of structural change in the Floquet state

from the apparent changes that occur because the states have been relabeled.

3.4.1 Sharp Crossing

We first calculate radiation spectra for the states whose Husimi distributions are
shown in Fig. 3.4(a,c, and f). The first two states are associated with the curve A
in Fig. 3.3, while the third is associated with curve B. By changing from A to B
after the avoided crossing we can account for the effects of relabeling as described
above. The spectra are shown in Fig. 3.7. Between ¢ = 170 and ¢ = 175.5 there is
a significant increase in the radiation at the highest harmonics (11-19). However,
these harmonics have decreased at e = 180. This increase and subsequent reduction
is easier to see in Iig. 3.8, which shows the differences between the spectrum at

€ = 170 and the spectra at ¢ = 175.5 and 180. This temporary increase in high
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harmonic generation is exactly what we expect from the temporary changes in the
phase space structure seen in Fig. 3.4. At the midpoint of the AC both states are
a mixture of the two states at ¢ = 170 and both are spread over a wider region
of phase space. This leads to an increase in harmonic generation at this value of
€. After the avoided crossing, however, these structural changes disappear (with
the exception of the relabeling) and the harmonic generation subsides. Thus, sharp
ACs only affect the radiation spectrum of a Floquet state for field strengths that lie

within the crossing.

3.4.2 Broad Crossing

Now we investigate the radiation spectra for the states shown in Fig. 3.6(c, f, and
h). Again we switch from state E to state D for values of € that are beyond the
avoided crossing, to account for the relabeling that takes place. Fig. 3.9 shows the
spectra for these states. There is a steady increase in the radiation at the highest
harmonics (31-45) as ¢ is increased. This is more easily seen in Fig. 3.10 which
shows the differences between the spectra. The changes in the spectra are quite
complicated, but there is clearly no reversal in the increase of high harmonics as
was observed in the sharp crossing. This broad AC permanently increases the high
harmonic generation. This is closely tied to the delocalization that is observed in

Fig. 3.6, since the generation of high harmonics depends on the number of energy
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Figure 3.7: Radiation spectra generated by the Floquet states shown in Figure
3.4(a,c,e). There is a significant increase in harmonic generation from (a) ¢ = 170
to (b) ¢ = 175.5. However, by (c) ¢ = 180 this increase has disappeared. All
spectra have been normalized so that they have the same power at the fundamental
frequency wy.
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Figure 3.8: Differences between spectra shown in Figure 3.7. The difference between
Fig. 3.7b and Fig. 3.7ais shown in (a). The difference between 3.7c and 3.7a is shown
in (b). The increase and subsequent decrease in harmonic generation is apparent.
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levels over which the Floquet state is spread [40].
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Figure 3.9: Radiation spectra generated by the Floquet states shown in Figure
3.6(c,f,h). There is a significant increase in harmonic generation from (a) ¢ = 740
to (b) ¢ = 760 and by (c) ¢ = 780 the harmonic generation has increased even
further. All spectra have been normalized so that they have the same power at the
fundamental frequency w.
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Figure 3.10: Differences between spectra shown in Figure 3.9. The difference be-
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Chapter 4

The Transition to Chaos

In the previous chapter we saw that Floquet eigenstates change as € is increased
in the driven square well system. In particular, we saw that these states tend to
delocalize as they pass through overlapping avoided crossings. In this chapter we
will use the same model, but examine how the overall quantum system changes
as € is increased. We show that overlapping avoided crossings play a key role in
increasing information entropy in the system and destroying localization. However,
localized states still exist at relatively high values of e. We propose a possible
classical explanation for this phenomenon and show that it is consistent with the
complete lack of localization that is seen at extremely high values of e.

The results presented in the first part of this chapter, and those presented

in earlier chapters indicate that overlapping avoided crossings play an important
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role in the transition of this system from a regular quantum system to a chaotic
one. We discuss how these results fit with what has been said about quantum
chaos in the literature. At the end of the chapter we present a unified description
of the dynamics of harmonically-driven, bound, one-dimensional quantum systems.
This description accounts for many of the observed phenomena in these systems
and highlights the close connection between the quantum systems and their chaotic

classical counterparts.

4.1 Entropy and Delocalization

The results shown in the previous chapter show that sharp, isolated avoided crossings
result in an exchange of structure between the two states involved while broad,
overlapping avoided crossings can result in genuine changes to the states involved.
These overlapping avoided crossings seem to cause the states to become delocalized,
as can be seen qualitatively in the Husimi distributions shown in Fig. 3.6. To get
a quantitative measure of how overlapping avoided crossings lead to delocalization
we must have a quantitative measure of localization. One of the most commonly
used quantitative measures of the localization of a quantum state is its information

entropy, or Shannon entropy [41, 42] which is defined as

So==Ylcaal*In (|cm|2) (4.1)
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where the c¢,, are the coefficients in the basis expansion of the wavefunction. In
this chapter we will continue to study the driven square well system and we will use
the eigenstates of the undriven square well as the basis with which we calculate the
Floquet states of the driven system. The Floquet-state wavefunction can then be

written as
|Ya) = E Cna| M) (4.2)

where « is an index used to label the Floquet states and |n) is an eigenstate of the
undriven square well.

Low values of S, indicate a state that is relatively localized in the basis of
unperturbed energy eigenstates while high values indicate a state that is delocalized.
In this system, though, the Shannon entropy is not enough by itself to identify the
localized states we are interested in. This is because the classical dynamics of this
system is always regular at high values of action. A full description of the classical
dynamics of this system can be found in Chapter 2, but here we present a few strobe
plots of the classical dynamics in Fig. 4.1. At very low field strengths (e = 100),
only trajectories at very low J are chaotic while the M = 1 primary resonance
dominates the dynamics around J = 16 and trajectories above J = 20 are regular.
At € = 960 the chaotic region has grown considerably and the M = 1 resonance is
less prominent, but the motion above J = 35 is still regular. For extremely high

field strengths (e = 6400) the M = 1 resonance has been completely destroyed but

62



there is still regular motion at high values of J. Based on these observations we
expect the quantum system to have delocalized eigenstates at low energies (at least
for high values of €), but localized regular eigenstates at high energies. For this
reason a low value of the Shannon entropy for a Floquet state may indicate that
the state is a high-energy regular state rather than a localized state in the chaotic
region.

We need an additional quantity to help us identify states that are localized in
the chaotic region, and that quantity is the expectation value of Hp, the Hamiltonian

for the undriven square well. This quantity is defined as
Ha = (ol Ho [0y = 3 lenal* En (4.3)

and the F, are given in Eq. 2.8. Plots of energy versus entropy have often been
used to identify localized states in quantum systems whose classical counterpart is
chaotic [42, 43]. States that have have low values of H, will be located in the low
energy chaotic region. Any of these states that also have low values of S, will be
localized. Plots of H, versus S, for our system are shown in Fig. 4.2.

In Fig. 4.2a (¢ = 100) we see that the states with high values of H, form a
regular sequence that decreases in entropy as the energy increases. These are the
high energy regular states discussed above. Near H, = 600 there is a line of points
that all have about the same energy but a spread of entropies. Each of the states

in this line is associated with the M = 1 resonance seen in Iig. 4.1a. The state in
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Figure 4.1: Strobe plots of the classical dynamics of the driven square well at three
field strengths. J and 8 are the dimensionless action-angle variables for the undriven
square well. At (a) ¢ = 100 and (b) ¢ = 960 the M = 1 primary resonance is still
visible near J = 16 and .J = 20, respectively. At (c) ¢ = 6400 the resonance has
been completely destroyed, but a higher order resonance is beginning to form at the
top of the chaotic region.
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Figure 4.2: Plots of H, vs. S, (see Eqs. 4.3 and 4.1) at three different field
strengths. At (a) e = 100 the sequence of regular states is clearly visible at high H,,
while at low H, the states in the chaotic region do not form an organized sequence.
The states associated with the M = 1 primary resonance form a line at H, =~ 600
indicated by the label R in the plot. At (b) ¢ = 960 most of the low H, states are
in a cluster between S, = 2 and S, = 3. One strongly localized state is indicated
by the label L in the plot. The labels M and D indicate moderately delocalized
and strongly delocalized states, respectively. At (c) e = 6400 all low H, states are
clustered around S, = 3.5 and there are no clearly visible localized states.
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this line that has the lowest entropy is the ”ground state” of that resonance, and
each point to the right of that represents an excited state of the resonance. Below
H, = 600 the states form a somewhat irregular sequence as one might expect from
the fact that the classical dynamics is a mix of regular and chaotic motion for low
energies at this field strength. Fig. 4.2b is quite different. Here the high energy
states still form a regular, if slightly distorted, sequence. However, the resonance
feature is no longer clearly visible and the low energy states are mostly bunched
together near H, = 750 and S, = 2.75. This grouping occurs as the states become
delocalized and spread throughout the chaotic region. This tends to move all of the
states toward some average value of H, (because they are all spread evenly over the
entire energy range of the chaotic region) and toward higher values of S, (because
all of the states are delocalized). At this field strength, though, not all the states
in the chaotic region are fully delocalized. The label L in the plot indicates a state
that is still highly localized, the label M indicates a state that is only moderately
delocalized, and the label D indicates a state that is fully delocalized (very high
entropy). Husimi distributions for these three states are shown in Fig. 4.3 and they
support our characterization of these states. Finally, in Fig. 4.2c (¢ = 6400) we see
that localization has been completely destroyed. All of the low energy states are in
a cluster near H, = 2500 and S, = 3.5. The high energy states still form a regular

sequence, although there are irregularities at the low energy end of that sequence.

66



At this high field strength we would expect to find no localized states in the chaotic
region.

It is clear from Fig. 4.2 that there is a trend toward higher entropy as €
is increased. To illustrate that trend we show, in Fig. 4.4, a plot of the average
entropy in the system versus field strength. The average entropy is calculated by
first ordering the states by increasing value of H, and then using the entropies of
the 60 states with the lowest values of H, to calculate the average entropy, S. At
€ = 0 all states have an entropy of 0, because the Floquet states at ¢ = 0 are the
eigenstates of the undriven square well. As € is increased, S increases rapidly as the
chaotic region forms and grows in the classical dynamics and the quantum Floquet
states begin to delocalize. At high values of € the curve begins to flatten, because
at high € most of the states are already fully delocalized. Most of the increase in
entropy that occurs for € greater than about 3200 is due to the increase in the size of
the chaotic region. This brings more basis states into the strongly coupled chaotic

group, thus allowing each chaotic eigenstate to be spread over a greater number of

basis states and thereby increase its entropy.

4.2 Avoided Crossings and Entropy

In Chapter 3 we saw how overlapping avoided crossings lead to delocalization of

quantum Floquet states. Others have found that eliminating avoided crossings in
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Figure 4.3: Husimi distributions of the states labeled in Fig. 4.2(b). The state (a)
L is strongly localized near J = 1. The state (b) M is much less localized than L,
but still has most of its probability at low J. The state (c) D is fully delocalized in
J.
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Figure 4.4: Average entropies (S) as a function of field strength e. At each field
strength the average entropy is calculated using only the 60 states with the lowest
values of H, (see Eq. 4.3). At € = 0 the entropy is 0 for all states. As € is increased
S rises rapidly at first but more slowly at high e.
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a quantum system preserves localization of the eigenstates [44]. It has been pro-
posed [10, 45] that overlapping avoided crossings lead the eigenstates of a classically
chaotic quantum system to take on a statistical character. The idea is that in
the semiclassical limit, an avoided crossing in the quantum system corresponds di-
rectly to a resonance in the classical system. Just as overlapping resonances lead
to classical chaos [25], overlapping avoided crossings lead to quantum chaos and
stochastic eigenvectors. Delocalization and stochasticity are essentially the same
thing (a stochastic eigenvector is spread randomly over some subset of the basis
and will thus represent a delocalized state). Both delocalization and stochasticity
can be measured by the Shannon entropy. Based on our findings and the proposal
of [10, 45], we expect to see a significant increase in entropy for states involved in
overlapping avoided crossings.

First we will examine what happens in an isolated, sharp avoided crossing.
Fig. 4.5 shows an isolated avoided crossing in the quasienergy spectrum of our
system centered near ¢ = 175.5. The labels A and B refer to the continuously
connected states associated with the two indicated quasienergy curves. Based on our
findings in Chapter 3 we expect these two states to simply exchange their entropies
and energies. Fig. 4.6 shows that this is exactly what happens. At e = 174, before
the avoided crossing, state A sits at (S, = 1.6, H, = 220) and state B is located

at (2.2, 680). At ¢ = 175.5, near the center of the avoided crossing, both states are
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located around (2.5, 450). At this field strength each state is an approximately equal
superposition of the two initial states from ¢ = 174. This leads each state to have an
energy that is close to the average of the initial energies and a significantly higher
entropy, because the superposition is spread over a larger number of basis states.
However, at € = 177, after the avoided crossing, the two states have exchanged their
places in the plot as predicted. This example shows that isolated, sharp avoided
crossings lead to only a temporary increase in entropy at the center of the avoided
crossing. This entropy increase does not remain at values of ¢ that are beyond the
avoided crossing. For this reason, isolated avoided crossings do not contribute to
the overall delocalization and increasing stochasticity of the eigenstates.

Next we examine what happens when a broad avoided crossing overlaps with
another avoided crossing. Fig. 4.7 shows a sequence of overlapping avoided crossings
between the states labeled €', D, and F in the range ¢ = 250 to ¢ = 330. The
broad avoided crossing between states C' and D overlaps with the sharper avoided
crossings between D and F at ¢ &~ 298 and between D and C at ¢ ~ 305. Based on
our findings in Chapter 3 we expect these overlapping avoided crossings to result
in a permanent increase in entropy that remains at field strengths that are beyond
the avoided crossing region. Fig. 4.8 shows the (S,, H,) values for these states
at four different field strengths. As e is increased the motion of the states in the

S, — H, plane is quite complicated. The basic result is that the overall entropy
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Figure 4.5: Plot of quasienergies 2, as a function of field strength showing a sharp
avoided crossing near ¢ = 175.5. The labels A and B indicate the two continuously
connected states involved in the avoided crossing.
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Figure 4.6: Plot of H, vs. S, for the states labeled A and B in Fig. 4.5 at three
field strengths. The different markers indicate different field strengths. At ¢ = 175.5,
at the center of the avoided crossing, the two states both have high entropies and
energies that are close to the average of their energies at ¢ = 174. By ¢ = 177 the
two states have exchanged places in the plot.
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of the three states is increased by the overlapping avoided crossings. State C' at
€ = 320 occupies the same spot that state E occupied at ¢ = 260, so state C' has
just taken the place of state F/. However, states D and F at ¢ = 320 do not occupy
the same locations on the graph as did states C' and D at ¢ = 260. State I is at
a higher entropy at ¢ = 320 than is state C at € = 260, and its energy is near the
average of the energies of the initial €' and F states. State D has also been shifted
to higher entropy and a slightly higher energy after passing through the overlapping
avoided crossings. In this case the increase in entropy does not disappear at field
strengths beyond the avoided crossing, but remains for all higher field strengths.
So we see here that overlapping avoided crossings tend to increase the entropy of
the states involved and move their energies toward some average value. It is easy
to see how several such overlapping avoided crossings could lead to the clumping
of states at high entropy and moderate energy that is seen in Figs. 4.2b and 4.2c.
At sufficiently high field strengths every eigenstate in the chaotic region will have
passed through many overlapping avoided crossings. The result is that at these field
strengths all states in the chaotic region will be delocalized and stochastic in nature.

Clearly there is a relationship between classical chaos on one hand, and delo-
calization and stochasticity of eigenvectors on the other. But from Figs. 4.2b and
4.3a we see that localized states can exist even in regions of the phase space that are

fully chaotic. In the following section we will explore how the classical dynamics of
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Figure 4.7: Plot of quasienergies €2, as a function of field strength showing overlap-

ping avoided crossings involving the states labeled C', D, and F.
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Figure 4.8: Plot of H, vs. S, for the states labeled C, D, and F in Fig. 4.7 at
four field strengths. The points for each state undergo complicated motions as € is
increased through the overlapping avoided crossings. States C', D, and F at € = 320
should be compared to states F, D, and C, respectively, at ¢ = 260. Note that
although C at € = 320 occupies the same spot as F at € = 260, the other two states
have moved to higher entropies and more moderate energies.
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the system can explain why localized states persist even when the system is highly

chaotic.

4.3 Classical Dynamics and Localization

4.3.1 Review of classical dynamics

All time-independent one-dimensional Hamiltonian systems are integrable, but with
the addition of a harmonic driving force the possibility for chaos exists in the classical
dynamics. In this section we will give a quick review of the classical dynamics of a
driven, bound, one-dimensional system. We will focus on how the dynamics changes
from regular to chaotic as the strength of the driving field is increased.

As the driving field is increased from zero in these systems, the unperturbed
motion of the system is distorted. In certain regions of phase space this distorted
motion may have a frequency which is an integral multiple of the driving frequency.
This leads to a strong coupling between the system and the driving field, and the
creation of a resonance region in strobe plots of the classical phase space. Within
the resonance region the dynamics of the system is strongly modified so that it
resembles the motion of a pendulum. The motion inside these resonance regions is
still regular and integrable. However, as the field strength is increased the resonances
grow larger and as the two resonances grow toward each other daughter resonances

form between them. These daughter resonances form a fractal set that can destroy
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the regular motion, causing the dynamics in that region of phase space to become
chaotic. It is the creation of this set of daughter resonances leading to chaos that is
often referred to as resonance overlap.

Before the resonances overlap the phase space is dominated by Komolgorov-
Arnol’d-Moser (KAM) tori, invariant curves that represent fully integrable motion.
These KAM tori form an impenetrable boundary which no classical trajectory can
cross. When resonances overlap, these KAM tori are destroyed and trajectories can
pass through them. Initially the KAM tori will change from a continuous curve to a
fractal set of points known as a Cantorus. Chaotic trajectories can diffuse through
Cantori, but only very slowly. As the resonances overlap further the fractal set that
remains from the original KAM torus will be so small as to provide no barrier to
classical trajectories. At this point chaotic trajectories may freely roam throughout
the region of resonance overlap.

Periodic orbits also play an important role in the dynamics of these systems.
In a driven, 1-D system a periodic orbit means an orbit that returns to its starting
point in phase space after an integral number of periods of the driving field. At zero
field strength, all periodic orbits are stable, but as soon as the driving field is turned
on some periodic orbits will become unstable. When two resonances begin to overlap
the periodic orbits in the overlap region may be stable or unstable. Eventually, after

the resonance overlap has destroyed all KAM tori in the region and the motion is
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fully chaotic, all periodic orbits in the region will be unstable. These periodic
orbits play a very important role in determining the dynamics of the corresponding

quantum system.

4.3.2 Superscars: classical dynamics and localization

In this section we would like to examine the classical dynamics that underlies the
localization of Floquet states in this system. However, we must first distinguish
among two different types of localization. Exponentially localized states, such as
those described by Anderson localization in disordered systems, are characterized by
wavefunctions that fall off exponentially outside of some region of the phase space.
At the other end of the localization spectrum is weak localization, often referred
to as scarring, in which the quantum state has a high probability density in some
particular region of the phase space. Looking at Figure 4.3 it is easy to see that
even the state we refer to as delocalized has areas of high probability density, and
is thus weakly localized. The state we call localized does not meet the stringent
requirements of exponential localization, but it is clearly more localized than the
other two states shown in Fig. 4.3 because it occupies a much smaller region of
phase space (and covers a much smaller range of energies). We will show in this
section that the underlying classical dynamics of the system is responsible for the

strong (but not exponential) localization of this state.
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Localization of Floquet states can often be directly related to certain prop-
erties of the classical dynamics. Floquet states that are in regular regions of the
phase space are always localized because they lie along invariant KAM tori. States
associated with large (area > h) resonances are still localized, because the resonance
region is itself regular and so the states are again confined by KAM tori. Resonances
that are smaller than A will not usually have localized quantum states associated
with them. When resonances overlap, which leads to chaos in the classical motion,
the quantum states can delocalize and occupy a larger region of the phase space.
However, this does not always happen as soon as there is any overlap. Quantum
states can still be confined by Cantori in the classical phase space, even though
Cantori do not confine classical trajectories [5, 33, 46]. This is because the local-
ization length of a quantum state, which is the characteristic distance over which
the state is spread, is a function of the classical flux through a particular region of
phase space. If the flux through a Cantorus is smaller than A, then the quantum
state will be blocked by that Cantorus just as it would be blocked by a KAM torus
[46]. Even when states are not blocked by KAM tori or Cantori they may remain
weakly localized, or scarred, near the unstable periodic orbits of the classical system
[39, 47].

All of these explanations revolve around the flow of classical trajectories. If

the classical flow of trajectories from the region is prevented or inhibited by some
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mechanism (KAM tori or Cantori) then quantum states will likely be localized in
that region. Even without any classical barrier some states may be scarred on
unstable periodic orbits. Scarring is also associated with the flow of classical tra-
jectories because it occurs when orbits that are near the unstable periodic orbits
diffuse through phase space more slowly than those that are not close to a periodic
orbit [48]. If nearby trajectories tend to remain close to the unstable periodic orbit
for short times then it is more likely that a quantum state will be scarred on that
unstable periodic orbit.

In our system we find at least one strongly localized state at ¢ = 960, even
though there are no KAM tori or Cantori apparent in the classical dynamics at this
field strength. However, there is some inhibition on the flow of classical trajectories
from very low energies to higher energies. The reason for this is that the excursion
parameter, which is the amplitude of oscillation for a free electron in a periodic
electric field, is still small at ¢ = 960. The excursion parameter is given by €/w?
in the scaled units of our model. For w = 80 and ¢ = 960 this is only 0.15 units.
This means that an electron placed at rest near the center of the square well would
never hit either wall of the well. Its motion would be regular and it would come
back to the same point in phase space after each cycle of the driving field. Even for
trajectories that have non-zero initial momentum it can sometimes take many cycles

of the field before the trajectory collides with one of the walls. For trajectories that
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start near the center of the well, the lower their initial energy the longer it will take
them before they collide with one of the walls. This phenomenon restricts the flow
of classical trajectories from very low energy to higher energies, at least for some
finite period of time. This phenomenon is related to scarring because there is a
continuous line of unstable (with respect to .J) periodic orbits at J = 0. Scars from
these non-isolated orbits overlap to form the “superscar” [49] observed in Fig. 4.3a.

If this is truly the mechanism that leads to localization in our system, we
would expect all localized states to have their support on low-energy basis states,
while delocalized states could have support on a wide range of basis states. Fig. 4.9
shows the occupation probabilities for the three states labeled L, M, and D in Fig.
4.2b. State L, which is a strongly localized state, has over 80% of its support on
the n = 1 and n = 2 basis states. State M, which is moderately delocalized, has
its support mainly on the n = 7 and n = 3 basis states but it has some support on
several other basis states as well. State D, which is fully delocalized, displays what
appears to be a random eigenvector with approximately equal support on every
basis state in the chaotic region.

If the Floquet state seen in Fig. 4.3a really is a “superscar”, we would expect
trajectories near the line of periodic orbits at J = 0 to remain at low values of
J for some time while trajectories that are far from J = 0 should diffuse rapidly

throughout the chaotic region. To see if this actually takes place we calculated
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Figure 4.9: Occupation probabilities for the states labeled L, M, and D in Fig.
4.2(b). The n index refers to the eigenstates of the undriven square well, which are
used as a basis for calculating these Floquet states (see Eq. 4.2). State (a) L is
strongly peaked at n = 1 and state (b) M is moderately peaked at n = 7, but state
(c) D shows no prominent peaks for any n.
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8000 trajectories with ¢ = 960 and initial conditions Jo = 1, Jo = 7, or Jg = 12
and evenly distributed over the interval —m < 8 < w. We plotted the location of
these trajectories at times t = T and ¢t = 57, where T" = 27 /w is the period of
the driving field. We grouped the resulting points into bins of width x = 1 (k is
the effective h of this system) and created a histogram to show the probability (pjl)
for the resulting points to have a particular value of the action j = J/k = J. The
results are shown in Figs. 4.10 through 4.12. Each figure shows the plot of the
resulting trajectories on the left and the corresponding histogram of probabilities
on the right. For trajectories with Jy = 1 (Fig. 4.10) we see that the histogram
displays a strong peak at j = 1 when t = T and a weaker but still very noticeable
peak at j = 1 when ¢t = 5T. So trajectories near J = 0 do tend to remain at low .J
for several cycles of the field. This behavior accounts for the observed “superscar”
state. In Fig. 4.11 we see that trajectories with Jy = 7 have a weak tendency to
remain at j = 7 after one cycle of the field, but after five cycles the probability is
evenly spread across all values of j in the chaotic region. This may explain why
state M, which is peaked on n = 7, is only moderately delocalized. In Fig. 4.12 we
see that trajectories with Jy = 12 have no tendency to remain at j = 12 even after
only one cycle of the field. This is typical of trajectories that have a high initial
value of J and this may be why all strongly localized states at this field strength

are low-energy states.
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Figure 4.10: Surfaces of section for ¢ = 960 resulting from 8000 classical trajectories
with initial conditions .Jo = 1 and uniformly spread over the interval —7 < 0 < 7.
These surfaces of section are shown at times (a) ¢ = T and (b) t = 5T, where
T = 2r/w is the period of the driving field. To the right of each surface of section
is a histogram showing the distribution of points as a function of j = .J/k, where
k = 1 is the effective h. This distribution is strongly peaked at j = 1 for ¢t =T and
moderately peaked for t = 57T.
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Figure 4.11: Surfaces of section for ¢ = 960 resulting from 8000 classical trajectories
with initial conditions .Jo = 7 and uniformly spread over the interval —7 < 0 < 7.
These surfaces of section are shown at times (a) ¢ = T and (b) t = 5T, where
T = 2r/w is the period of the driving field. To the right of each surface of section
is a histogram showing the distribution of points as a function of j = .J/k, where
k = 1 is the effective h. This distribution is moderately peaked at j =7 for t =T
but shows no prominent peaks for ¢t = 57.
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Figure 4.12: Surfaces of section for ¢ = 960 resulting from 8000 classical trajectories
with initial conditions .Jg = 12 and uniformly spread over the interval —7 < 8 < 7.
These surfaces of section are shown at times (a) ¢ = 7" and (b) t = 5T, where
T = 2r/w is the period of the driving field. To the right of each surface of section
is a histogram showing the distribution of points as a function of j = .J/k, where

k = 1 is the effective . This distribution shows no prominent peaks for t = T or
t =5T.
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This “superscar” mechanism works well at ¢ = 960 when the excursion param-
eter is only 0.15 units. But at much higher field strengths the excursion parameter
can be 1 or greater and there will no longer be a line of periodic orbits at J = 0. At
these extremely high field strengths every orbit will be driven into one of the walls
each cycle of the field, regardless of the value of Jy. In Fig. 4.13 we show plots
of 8000 trajectories with initial conditions Jy = 1 and evenly distributed in 8. For
both ¢t = T and t = 5T it is clear that there is no tendency for the trajectories to
remain at 7 = 1. This may explain why there are no strongly localized states visible

in Fig. 4.2c.

4.4 Eigenvalue Statistics and Chaos

So far we have primarily discussed the changes in the eigenstates of a quantum
system that are brought about by classical chaos. In this section we will review some
research on qualitative changes that occur in the spectrum of quantum eigenvalues
as a result of chaos in the classical system.

A time-independent one-dimensional system needs only one constant of mo-
tion to be integrable, and in these systems energy is always conserved. Hence all
one-dimensional systems are integrable. A driven one-dimensional system, though,
can be viewed as a two-dimensional system in what is known as extended phase

space, where time is treated as a second coordinate variable. These driven systems,
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Figure 4.13: Surfaces of section for ¢ = 6400 resulting from 8000 classical trajectories
with initial conditions .Jo = 1 and uniformly spread over the interval —7 < 0 < 7.
These surfaces of section are shown at times (a) ¢ = 7" and (b) t = 5T, where
T = 2r/w is the period of the driving field. To the right of each surface of section
is a histogram showing the distribution of points as a function of j = .J/k, where

k = 1 is the effective . This distribution shows no prominent peaks for t = T or
t =5T.
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then, generally do have one “conserved” quantity in this extended phase space, but
they must have two in order to be integrable. Similarly, the quantum versions of
these systems have properties that depend upon whether two good quantum num-
bers exist in the system or only one. In particular, it is known that regular states
that have two good quantum numbers will form a series of uncorrellated eigenvalue
sequences known as a mixed sequence. For each value of the first quantum num-
ber, there will be a sequence of values for the second quantum number. However,
if one quantum number is destroyed then the entire system will be comprised of a
single pure sequence. This change can be easily identified by studying the statisti-
cal distribution of the spacing between neighboring eigenvalues. Mixed sequences
have spacings that follow the Poisson distribution, while pure sequences have spac-
ings that follow a distribution derived from random-matrix theory [50]. Thus, the
change from Poisson to random-matrix statistics indicates a change from integrable
(2 good quantum numbers) to chaotic (only 1 good quantum number).

Just as the overlap of classical resonances destroys a local constant of motion,
it is the overlap of the corresponding quantum resonances that destroys one of the
quantum numbers of the system. As mentioned earlier, the overlap of avoided cross-
ings in the eigenvalue spectrum is the signature of quantum resonance overlap [10].
Spectral repulsion, which is the tendency of eigenvalues in a pure sequence to repel

each other, is associated with the extended states that are found after quantum reso-
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nances overlap [33]. So there is a close relationship between eigenvalue statistics and
localization. When the eigenstates are strongly localized the eigenvalues statistics
tend toward a Poisson distribution, but for delocalized eigenstates the distribution

is of the random-matrix type [9, 51].

4.5 Avoided crossings and classical dynamics

We have shown the importance of avoided crossings, and particularly overlapping
avoided crossings, in creating delocalized and stochastic eigenstates in a quantum
system. We have also discussed how quantum resonance overlap, which is associated
with overlapping avoided crossings, leads to changes in the eigenvalue spectrum of
the quantum system. Clearly avoided crossings play a key role in the transition from
regular quantum dynamics to quantum chaos. Since avoided crossings are associated
with quantum resonances, and those quantum resonances are related to resonances
in the classical phase space, we expect a relationship between avoided crossings and
the motion in the classical phase space. In fact, semiclassical methods have even been
used to predict the occurrence of avoided crossings in the corresponding quantum
system [52]. In this section we will review what is known about the relationship
between avoided crossings and classical dynamics.

In Section 2.3 we saw that at very low field strengths the eigenvalue curves of

our system crossed each other frequently, but at higher field strengths we begin to
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see avoided crossings in the spectrum. This is an indication that avoided crossings
are associated with classical chaos, which only becomes prominent at higher field
strengths. It has been found that avoided crossings only occur between states that
occupy regions in the phase space that are very close together [37]. This proximity
is best seen by plotting Husimi distributions for the states that are involved. If the
Husimi distributions are close together then the states can have an avoided crossing.
If two states do not have Husimi distributions that are close together then they can
only have an apparent crossing, where the two eigenvalue curves actually cross [39].
A state that is fully enclosed by KAM tori generally cannot overlap with a state that
is outside the KAM tori and thus can only be involved in apparent crossings with
these outside states [53], although quantum tunneling can sometimes permit states
confined by KAM tori to have avoided crossings with other states. The destruction
of classical KAM tori, and the corresponding overlap of quantum resonances, allows
previously isolated states to occupy the same region of phase space and thus have
avoided crossings [37]. As the field strength is increased and the classical system
becomes increasingly chaotic, the eigenvalue curves of the quantum system undergo
more frequent avoided crossings and fewer apparent crossings. It is generally true
that pure sequences have only avoided crossings, while mixed sequences have mostly
apparent crossings. So the proliferation of avoided crossings as the field strength

is increased is an indication of the change from Poisson to random-matrix statis-
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tics. Thus we see that overlapping avoided crossings, which are closely related to
resonance overlap and chaos in the classical system, lead directly to delocalization,

stochasticity, and changes in eigenvalue spectrum in the quantum system.

4.6 Matrix Picture of the Transition to Chaos

We have seen that avoided crossings occur when two states that are located close
to each other in phase space exchange their structure as € is increased. Obviously
changes of this nature should be reflected in the Floquet matrix (the time evolu-
tion operator over one cycle of the field). The structure of any matrix, though, is
basis dependent. To examine how the Floquet matrix changes its structure as €
is increased we must choose some basis in which to represent the Floquet matrix.
A clear choice of basis is provided by a quick look at the perturbation theory for
time-periodic systems.

Our driven square well system has a Hamiltonian of the form H = Ho+e€z f (1),
where Hg is a time independent Hamiltonian, # the dipole operator, ¢ is the field
strength, and f(t 4+ 7)) = f(t). For a slightly higher value of the field strength,
¢ 4 8¢, the Hamiltonian is H = Ho + €2 f(t) + ez f(t), or HF* = H® 4 Sei f(1),
where H€ stands for the full Hamiltonian when the field strength is €. Using an
extended phase space approach, where time is treated as a second spatial coordinate,

we can apply time-independent perturbation theory to find the quasienergies and
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Floquet states associated with Ht% provided we know the Floquet states and
quasienergies associated with H® [54]. If we denote the eigenstates of H by [¢f,)

and the quasienergies associated with these states by (2, we have

QG = Q4 8e((U5 |2 (1) |v5)) + O(5€%) (4.4)
and
ooy = o+ a3 LR 1 oy (@5)
/3 o
where
1 T
(o) =7 [ drlo) (1.6

Inspection of these equations shows that it is the matrix ((¥5[2f(?)[¢5)) that de-
termines the change in the eigenvalues and eigenvectors as the strength of the field
is increased. This matrix describes the coupling between Floquet states and we will
refer to this matrix as the coupling matrix during the remainder of this chapter.
Looking at how this matrix changes as the field strength is increased provides a
good picture of how the quantum dynamics changes from regular to chaotic.

At very low € the Floquet states will be almost identical to the eigenstates
of Hp, so the coupling matrix is essentially just the dipole matrix in the basis of
square well eigenstates (see Eq. 2.10). This matrix has large elements only near the
diagonal. As the field strength is increased the coupling matrix begins to change.

When a resonance forms in the classical phase space the quantum states associated
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with that resonance will become strongly coupled. As these resonances overlap
and KAM tori are destroyed, the classical flow between different regions of phase
space increases and this allows for stronger coupling between the Floquet states
that occupy those regions. As the chaotic region in the phase space grows large the
coupling between all of the eigenstates associated with the chaotic region will become
strong. If the eigenstates are ordered by increasing energy, this gives the coupling
matrix a block-diagonal form, with the low-energy chaotic states forming one block
that is essentially random while the high-energy regular states form another block
which still has large elements only near the diagonal. As the chaotic region grows
in the classical phase space, the chaotic block of the coupling matrix will also grow
as new states are added to the chaotic group. A matrix of this form will have
eigenvalue statistics intermediate between Poisson and random-matrix, because the
states in the chaotic block will have eigenvalues that conform to random-matrix
statistics while those in the regular block will follow Poisson statistics. A model for
eigenvalue statistics in systems that exhibit distinct regular and chaotic regions was
suggested by Berry and Robnik [55]. At intermediate field strengths, when there
is still some localization, the eigenvalue statistics may deviate significantly from
the Berry-Robnik model. Some studies have shown that localization can lead to
eigenvalue spectra that have band-random matrix statistics [9].

This progression from an essentially diagonal matrix to a matrix with a ran-
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dom chaotic block and a diagonal regular block is illustrated in Fig. 4.14. We
calculated the matrix (37 |2[¢g) for four different field strengths. While this is not
exactly the same as the coupling matrix described above (since it leaves out f(¢)
and it is not time-averaged), it suffices to illustrate the qualitative changes in the

coupling matrix. Fig. 4.14 shows contour plots of |(1

:U|zpf3>|2 At € = 100 (Fig.
4.14a) the matrix elements are large mainly on the diagonal, but the strong coupling
of the states associated with the M =1 classical resonance (see Iig. 4.1a) is visible
at o = 3 = 16. At e = 320 (I'ig. 4.14b) the chaotic block is beginning to form, but
the mixed phase space still provides some barriers to the classical flow of trajecto-
ries and this causes the matrix to have a patchy appearance. The patchiness of the
matrix is directly related to the fact that there are still several localized states at
this field strength. In Fig. 4.14c, we see that the chaotic block is fully formed for
€ = 960. Finally, at ¢ = 6400 (Fig. 4.14d) we see that the chaotic block has grown
much larger, just as the chaotic region in the classical phase space has grown (see
Fig. 4.1¢c).

The progression from regular classical motion to chaos in this system is very
similar to that seen in other bound, 1-D, time-periodic systems. We expect that
the quantum dynamics of this system is also characteristic of this class of systems.
The matrix description of our system that is given above provides a clear picture of

how the quantum system follows the dynamics of the classical system by increasing
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Figure 4.14: Dipole matrix |(¢, £|¢B>|2 in the Floquet basis for four different field
strengths. The Floquet states are ordered by values of H, (see Eq. 4.3), with state
o = 1 having the lowest value of H,. The dipole matrix is shown as a contour plot
with contours at 0.001, 0.005, and 0.0025. The matrix is shown for field strengths
(a) ¢ = 100, (b) € = 320, (c) € = 960, and (d) ¢ = 6400. At ¢ = 320 the states in
the chaotic region (low o and ) are not all strongly coupled, but at ¢ = 960 and
€ = 6400 all of the chaotic states are strongly coupled. The region of strong coupling
grows as the size of the chaotic region grows. Refer to Figs. 2.1 and 4.1 for strobe
plots at these field strengths.
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the coupling between states inside the chaotic region of phase space. This stronger
coupling leads these states to have numerous overlapping avoided crossings with
each other, causing them to mix their structure and eventually take on a statistical
character. As the coupling between the states becomes stronger and the eigenvectors
become increasingly stochastic, the eigenvalue spectrum will undergo a transition
from Poisson to random-matrix statistics and the transition to chaos in the system
will be complete.

The relationship between classical and quantum dynamics in this class of
systems could be better understood if the connection between quantum eigenstates
and periodic orbits of the classical motion was clearer. At zero field strength the
connection between a single quantum eigenstate and a single invariant torus in the
classical phase space is made clear by EBK quantization. The Gutzwiller trace
formula establishes a connection between the set of all quantum eigenstates and the
set of all unstable periodic orbits when the dynamics of the system is fully chaotic.
It may be possible to think of periodic orbits as a basis upon which the quantum
eigenstates are constructed [56]. At zero field strength each quantum state is built
on a single periodic orbit (invariant torus). As the field strength is increased the
quantum system passes through avoided crossings which can mix the quantum states
so that they are no longer associated with only one periodic orbit. In the limit of

global chaos each quantum state would be such a complicated mixture of periodic
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orbits that one could only clearly associate the set of all quantum states with the set
of all periodic orbits. This picture has a great deal of aesthetic appeal since it would
seem to explain the phenomenon of scarring, but at his point the connection between
periodic orbits and quantum states is not clear for systems that are intermediate
between integrability and global chaos. However, some progress has been made in
using semiclassical methods to investigate eigenvalue spectra for mixed phase-space

systems [57] and avoided crossings [58, 59].
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Chapter 5

Creation of QQuasienergy

Resonance States

In the previous chapters we have studied a closed quantum system driven by a strong
periodic field. Our primary motivation for studying this system was to gain insight
into quantum-classical correspondence in a simple quantum system with a chaotic
classical counterpart. However, we were also motivated by recent experimental work
with ultra-high intensity lasers. Many of these experiments involve irradiating atoms
with these intense lasers [15]. Atoms are, of course, open quantum systems. The
possibility of ionization, which does not exist in the model discussed in the previous
chapters, leads to many new phenomena.

One of the new phenomena observed in these systems is the stabilization of
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atoms in intense laser fields. Stabilization is characterized by a decrease in the
probability for an electron to ionize as the laser intensity is increased. This effect
was first discovered in theoretical studies of the interaction between high-frequency
lasers and atoms [60], but this stabilization has been observed in recent experiments
[16, 17]. Studies of the underlying classical dynamics of these systems using one-
and two-dimensional models have shown that the classical motion can often account
for the increased stability of the atom at higher laser intensities [16, 61].

Floquet theory (see App. A) provides the natural framework in which to
study these systems, as it did for the driven square well system. In open quantum
systems, though, the Floquet eigenstates have finite lifetimes. In some cases the
Floquet states of the system can be localized on stable structures in the classical
phase space [62], and this can lead to stabilization because these Floquet states have
very long lifetimes. In this case, stabilization would also be predicted by the classical
dynamics. However, there are often significant differences between the classical and
quantum dynamics of chaotic systems. One of the most striking examples of this is
scarring, where quantum eigenstates have higher probability to be found near the
locations of unstable periodic orbits in the classical phase space [13, 44]. The scarring
of Floquet states on unstable periodic orbits might make it possible for a quantum
system to exhibit stabilization even when the corresponding classical dynamics is

unstable. Some earlier studies indicate that stabilization can be associated with
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states that are scarred on unstable or weakly stable periodic orbits [47, 63].

In this chapter we use two versions of complex-coordinate scaling to calcu-
late the Floquet eigenvalues and eigenstates of a system consisting of an inverted
Gaussian potential and a monochromatic driving field. The number of resonance
states, which are localized Floquet states, increases as the field strength is increased.
This behavior is a sign of stabilization in this system. By examining the Husimi
distributions (see App. B) of the resonance states we have determined that the
newly created states are associated with unstable periodic orbits of the classical
motion. The behavior of these periodic orbits as the field strength is increased may
explain why there are more resonance states at high field strengths that at low field
strengths. In this chapter we also examine an avoided crossing between resonance
states. We find that this avoided crossing is very similar in character to the sharp
avoided crossing studied in Ch. 3 and does not result in permanent delocalization

of the resonance states that are involved.

5.1 Driven Inverted Gaussian Model

The model we will study is an inverted Gaussian potential interacting with a mono-
chromatic driving field. In the previous chapters we have used the length gauge
for describing the interaction between the electron and the driving field, but in

this chapter we will use instead the radiation gauge because it is easier to carry out
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complex-scaling calculations in this gauge. The length gauge and radiation gauge are
related by a canonical transformation described in Appendix C. The Hamiltonian

of the system in atomic units (which are used throughout the chapter) is

1 €

H = 2 <p — ;sin(wt)) — Voexp(—(z/a)?) (5.1)

where Vy = 0.63 a.u. and ¢ = 2.65 a.u. The strength of the driving field is ¢ and

the driving frequency is w. It is useful to write this as H = Ho + V, where

Hy = p; — Voexp(—(z/a)?) (5.2)

and

2

V = —gp sin(wt) + 26? Sin2(wt). (5.3)

The second term on the right-hand side of Eq. 5.3 has no effect on the classical
dynamics of the system and only results in an overall phase shift in the quantum
system.

Figure 5.1 illustrates the classical dynamics of this system. The strobe plots in
Fig. 5.1 are calculated by evolving a set of trajectories, all with initial momentum
p = 0, over many cycles of the field and plotting the location of each trajectory
when ¢t = 27n/w (after each full cycle of the field). For ¢ = 0 the motion is regular
and bounded for negative energies. Motion at positive energies is unbounded. Figs.
5.1a, 5.1b, and 5.1c show the classical strobe plots for w = 0.0925 a.u. and ¢ = .038,

.065, and .09 a.u., respectively. As € is increased the region near (z = 0,p = 0)
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remains stable, but the size of the stable region gets smaller as ¢ is increased. The
filled squares in Fig. 5.1 indicate the locations of the periodic points in the strobe
plot and the arrows show # = a and z = 2«a, where @ = ¢/w? is the excursion
parameter of a free electron in the field. The trajectories of these periodic orbits are
shown in Figures 5.2, 5.3, and 5.4. At these parameter values the periodic orbit at
(0,0) is stable while the other two periodic orbits are unstable. As ¢ is increased the
unstable periodic orbits move toward larger values of z, remaining close to z = «
and z = 2a. For very high frequency driving fields two of the periodic orbits can
be stable while the third is unstable. This is illustrated in Fig. 5.1d, which shows
the classical strobe plot for w = 2 a.u. and ¢ = 42 a.u. The value of a in Fig. 5.1d
is the same as in Fig. 5.1c, but at the higher frequency the periodic orbit located
near ¢z = 2« is a stable elliptic orbit surrounded by regular motion. The periodic
orbit at x = « is hyperbolic.

The quantum dynamics of this system has been the subject of several inves-
tigations during the past decade. The resonance states of this system were first
calculated by Bardsley and Comella in 1989 [64]. More recent studies have focused
on high-harmonic generation (HHG) in this system [65, 66]. It is the findings of
, Moiseyev, and Kosloff [67], hereafter BMK, that have the most relevance to our
work. They found that the number of resonance states in this system increased

as the field strength was increased over a certain range. BMK explain the cre-
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Figure 5.1: Strobe plots of the classical dynamics for the driven inverted Gaussian
system. The initial conditions used to generate the plots all lie on the line p = 0.
« is the classical excursion parameter for a free electron the field. The locations of
the periodic orbits (stable and unstable) are indicated by filled squares.
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Figure 5.2: Trajectories of periodic orbits in the driven inverted Gaussian system
for w = 0.0925 a.u. and ¢ = 0.038 a.u. The small oval near (z = 0,p = 0) is the
stable periodic orbit. The larger orbits are unstable. The initial conditions for these
periodic orbits are (z = —0.224,p = 0), (z = 3.046,p = 0), and (z = 6.977,p = 0)
in atomic units.
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Figure 5.3: Trajectories of periodic orbits in the driven inverted Gaussian system
for w = 0.0925 a.u. and € = 0.065 a.u. The small oval near (z = 0,p = 0) is the
stable periodic orbit. The larger orbits are unstable. The initial conditions for these
periodic orbits are (z = —0.390,p = 0), (z = 9.092, p=0), and (z = 16.668, p = 0)
in atomic units.
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Figure 5.4: Trajectories of periodic orbits in the driven inverted Gaussian system
for w = 0.0925 a.u. and ¢ = 0.09 a.u. The small oval near (z = 0,p = 0) is the
stable periodic orbit. The larger orbits are unstable. The initial conditions for these
periodic orbits are (z = —0.555,p = 0), (z = 11.517, p=0), and (z = 22.040,p = 0)
in atomic units.
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ation of new resonance states as the field strength is increased by analyzing the
dynamics of the time-averaged system in a reference frame that oscillates with a
free electron in the driving field, known as the Kramers-Henneberger or K-H frame
[68]. They found qualitative agreement in that the number of bound states in the
time-averaged potential increases as the field strength is increased. However, the
quantitative agreement was not very good. This is not surprising since the time-
averaged K-H description is only accurate for very high frequency driving fields.
Since the frequency of the driving field used by BMK and in this work (w = .0925
a.u.) is lower than the frequency of motion for two of the bound states in the
undriven system (.4451 a.u. and .1400 a.u.), the time-averaged K-H description is
not quantitatively accurate. It is somewhat surprising that the time-averaged K-H
description is qualitatively accurate because the classical motion of the system in
the time-averaged K-H frame is stable while the classical motion of the exact system
is largely unstable. For a > 1 the time-averaged potential in the K-H frame is a
double well with minima separated by approximately 2cc. Motion in this double well
would be quite different from that seen in the strobe plots in Fig. 5.1a-c (although it
would closely resemble the motion shown in Fig. 5.1d, which is at a frequency that
is high enough for the time-averaged K-H description to be valid). Our goal in this
chapter is to find an alternative explanation for the creation of resonance states as ¢

is increased in this system, an explanation that does not rely on the time-averaged
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K-H description.

5.2 Complex Coordinate Scaling

In recent years the technique of complex coordinate scaling has been used extensively
in the study of open quantum systems. In this section we will review two versions
of complex coordinate scaling (standard and exterior scaling) and show how these
techniques can be used to compute the resonance states of an open, time-periodic
system. Results from the standard and exterior scaling versions are compared, for

both time-independent and time-dependent calculations.

5.2.1 Standard complex coordinate scaling (CCS)

We first examine how the eigenvalues and eigenstates of a time-independent open
system can be calculated using standard complex coordinate scaling (CCS), a tech-
nique that is examined in detail in Refs. [69, 70]. In this chapter we will use a basis

of particle-in-a-box states for our calculations. These states are defined by

(2[n) = %sin (? _ %) , (5.4)

where —L/2 < z < L/2. Calculations using CCS are performed just as they are in
traditional quantum mechanics, except that the coordinate is scaled in the Hamil-
tonian so that z — ze® (0 < # < w/4). Scaling the coordinate in this fashion allows

us to represent resonance states, which are not in the Hilbert space, using square
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integrable eigenfunctions. As a result of this scaling the new time-independent

Hamiltonian is

} ' 2—2i0 '
Hy = Ho(ze") = d 5~ Voexp (—(mew/a)Z) . (5.5)

The kinetic energy operator is easily evaluated using the basis states in Eq. 5.4. As

long as our box is sufficiently large (L >> 2a/+/cos(26)) we find that
(m| = Voexp (=(xe/a)?) [n) = V(m + n) = V(|m — n]) (5.6)

where

~ Voayme jirlae= %Y (]71’)
/7 = - _— _
V(j) 7 exp N cos {5 ) (5.7)

Once these matrix elements are calculated the Hy matrix can be constructed. Diag-
onalizing Hy yields the energy eigenvalues of the time-independent system as well
as the eigenvectors
N

|¢s) = 2—31 Cniln). (5.8)
Fig. 5.5a shows the energy eigenvalues of Hy calculated without complex scaling
(f = 0). The potential supports three bound states at £/ = —0.4451, —0.1400, and
—0.00014 a.u. Without complex scaling all eigenvalues lie on the real axis. When
the coordinate is scaled, though, the Hamiltonian becomes non-Hermitian and it
is possible for eigenstates of the scaled system to have complex eigenvalues. This
can be seen in Fig. 5.5b, which shows the eigenvalues calculated using CCS with

# = 0.3. The bound state eigenvalues remain on the real axis but the positive-energy
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continuum states are rotated into the lower half plane by an angle of 26. It is this
rotation of the continuum that will allow us to identify resonances. No resonances

exist for the system with Hamiltonian Hy, only bound states and a continuum.

5.2.2 Exterior complex coordinate scaling

The basic idea of exterior complex coordinate scaling (ECCS) is to scale the z

coordinate by a factor ¢’ as in CCS, but only in the region |z| > z, where the
potential is zero. Discontinuities at +z, are avoided by using a smooth scaling

relation  — F(z), where

Fle) =2 4 (¢ — 1) [x o (ggmi B 35)] (5.9)

with A =5 a.u. and 25 = 25 a.u. This exterior scaling method is given a thorough
presentation in [70, 71]. Because the potential is zero in the region where the
coordinate is scaled, the potential matrix elements can be calculated without any
complex scaling (i.e. using Eq. 5.6 and 5.7, but with # = 0). The scaled time-

independent Hamiltonian then becomes Hy = Hy + Voap, where

82

0
VCAP($) = Vo(;r) + Vl(aj)— + Vg(%)w

o (5.10)

acts as a complex absorbing potential. The coordinate-dependent factors in Eq.

5.10 are defined by

(5.11)
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Figure 5.5: The complex-scaled energies of the undriven inverted Gaussian system.
The unscaled energies are shown in (a), the CCS energies in (b), and the ECCS
energies in (c). The bound states of the system have energies -0.4451, -0.1400, and
-0.0001 a.u. All calculations were performed using a box size L = 200 a.u. and 400
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(5.12)

and
Valw) = 51— F72 (@), (5.13)

where f(z) = 0F/0x. Plots of F(z), Vo(z), Vi(z), and V,(z) are shown in Figures
5.6, 5.7, 5.8, and 5.9.

We will again use a basis of particle-in-a-box states to calculate Hy. Matrix
elements for the potential energy term are calculated without any complex scaling,
while the kinetic energy and Vi 4p matrix elements are calculated numerically. Di-
agonalizing Hy gives the complex energy eigenvalues for the exterior scaled system,
which are shown in Fig. 5.5c. Note that the bound state eigenvalues are still on the
real axis and most of the continuum states have been rotated into the lower half
plane by 26. However, several of the positive energy states have been rotated into the
lower half plane by considerably less than 2. We refer to these as “partially scaled”
continuum states. Figure 5.10 shows the wavefunction of one fully scaled continuum
state and one partially scaled continuum state. The partially scaled state is strongly
peaked near z = z, and it is non-zero only within the region —z; < z < z4, while
the fully scaled state is zero within this region. As z, is decreased toward 0, the
number of partially scaled states decreases. At z; = 0 the ECCS eigenvalues exactly

match the CCS eigenvalues as expected.
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Figure 5.6: The scaled z coordinate, F'(z), for standard and exterior complex scaling.
The thick line shows the scaled coordinate for CCS with 8 = 0.3. The thinner line
shows the ECCS coordinate with 8 = 0.3 and z¢ = 25 a.u.
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Figure 5.7: The complex local potential Vy(z) which is included in VCAP to preserve
the volume element. The potential is shown for § = 0.3 and zo = 25 a.u.
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Figure 5.8: The complex local potential Vj(z) which is the coordinate-dependent
factor multiplying d/dz in Voap. The potential is shown for # = 0.3 and z¢ = 25
a.u.
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Figure 5.9: The complex potential V3(z) which is the coordinate-dependent factor
multiplying d?/0z2 in Voap. This potential is vanishes in the interaction region,
where the physical potential is non-zero. The potential is shown for § = 0.3 and
o = 25 a.u.
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Figure 5.10: Wavefunctions of two ECCS continuum states. The state shown in (a)
is a partially-scaled continuum state whose eigenvalue is rotated by less than 26 from
the real axis. The state in (b) is a fully-scaled continuum state whose eigenvalue is
rotated the full 20 from the real axis. The partially- scaled state is localized between
—zs and x5 (x5 = 25 a.u.), while the fully-scaled state is almost excluded from this
region. Both states are peaked near +ux;.
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5.2.3 Husimi distributions and CCS

Since we will want to examine the structure of the resonance states in the periodically
driven system it is important first to examine the structure of the eigenstates of H,.
We can accomplish this by calculating Husimi distributions (see App. B) for each of
the three bound states. In this chapter we construct all Husimi distributions using
Gaussian wavepackets with o = 2, where o is defined as in App. B. This gives each
wavepacket a width of 1.41 a.u. in z and 0.35 a.u. in p.

Calculating Husimi distributions for complex-scaled states is not completely
straightforward. One cannot simply apply Eq. B.1 to the states calculated using
CCS because the wavefunctions are not functions of the real spatial coordinate, but
rather of the complex-scaled coordinate. Some authors have attempted to rotate
the complex-scaled states back into the real coordinate frame in order to calculate
the Husimi distribution [72]. While this is a simple procedure to carry out, as it
simply involves replacing ¢ (z) with ¥ (ze®) in Eq. B.1, it does not always work
because the complex-scaling transformation is not generally reversible. We avoid
these problems by calculating Husimi distributions for ECCS states only. In our
ECCS calculations the coordinate is only complex-scaled in the region |z| > 25 a.u.,
so for |z| < 25 a.u. there is no complex-scaling of the wavefunction. The ECCS
method has been shown to produce the correct time-evolution of a wavepacket within

the unscaled region, with reflectionless absorption of the wavepacket in the scaled
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region [73]. This allows us to calculate the Husimi distribution of an ECCS state
using Eq. B.1, provided that we are only interested in the Husimi distribution in
the unscaled region. This procedure is similar to that used in Ref. [62], in which the
wavefunctions are calculated on a large grid of points in z and repeatedly projected
onto a smaller grid as the wavefunction evolves. As in our method, the Repetitive
Projection Method induces non-unitary time-evolution only on the parts of the
wavefunction that are outside some small range of z and the Husimi distributions
within that small range can be computed normally.

Husimi distributions for the three ECCS bound states of ﬁo are shown in
Figure 5.11. The Husimi distributions shown in Figs. 5.11a and 5.11b match those
that are found without complex scaling the Hamiltonian and hence they are the
correct distributions. The distribution shown in Fig. 5.11c shows some very slight
asymmetry near x = £25 a.u. This is an effect of the complex-scaling and it is not
seen in the unscaled bound states. Except for this small deviation the distribution
shown in Fig. 5.11c is indistinguishable from the Husimi distribution of the unscaled

bound state.

5.2.4 Floquet calculations

As we have seen, complex coordinate scaling can be used to calculate the first N

energy eigenstates of Hy. These eigenstates can then be used as a basis to compute
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Figure 5.11: Husimi distributions of the bound states of the inverted Gaussian
system. The bound state wavefunctions were calculated using ECCS with 2, = 25
a.u. The scaling angle is 8 = 0.3 for all plots. These distributions match those
calculated without complex scaling, except for the very slight asymmetry at the far

left and right of (c).

122



the one-period time evolution (Floquet) matrix, U(T), for the driven system (see
App. A). This matrix is calculated by numerically integrating the time-dependent
Schrodinger equation N times from ¢ = 0 to t = 7' = 27 /w with initial conditions
|W(t = 0)) = |¢), where |¢;) is the ith energy eigenstate of Hp. Diagonalization of
this matrix gives the Floquet eigenvalues and eigenstates (in the basis of eigenstates
of Hy).

The time-dependent Schrodinger equation for the driven inverted Gaussian
system is

L 0 = € . ¢
zh%M}) = Hg|¥) — 5p51n(wt)|lll> + 22 Sin (wt)|¥) (5.14)

where p is the complex scaled momentum operator. Since all computations are
performed in a basis of eigenstates of Hy we must first calculate the matrix elements
of . In calculating these matrix elements it is critical to recognize that Hy is not
a Hermitian matrix and thus its eigenvectors do not have the usual properties that
eigenvectors of Hermitian matrices have. One cannot obtain the left eigenvectors
of a non-Hermitian matrix simply by taking the complex conjugate of the right
eigenvectors. In our case, Hy is complex symmetric and the coefficients of the left
eigenvectors are equal to (not complex conjugates of) the coefficients of the right

eigenvectors, so
N

(il = cnifnl. (5.15)

n=1

The normalization of the eigenvectors is also different. For our complex symmetric
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matrix the eigenvectors should be normalized so that the sum of the squares of the
cn;’s is 1, rather than the sum of the absolute squares. With this in mind we can

calculate the matrix elements for p using

N N
(Yilplyy) = Z E CmiCnj(m|p|n). (5.16)

m=1n
The (m|p|n) are easy to calculate when CCS is used and j is simply pe~"’. However,

when ECCS is used those matrix elements are calculated numerically using

(mlpln) = ~T [P(m 4+ ) + P(m — )] (5.17)
where
L2 T T
P(k) = /—m sin <kT - %) FV(2)de (5.18)

and f(z) is defined in Sec. 5.2.2.
Since the Floquet eigenstates are calculated in a basis of eigenstates of Hy we

can write them as
N
lgs) = > diglti). (5.19)
i=1
Because they are eigenstates of the one-period time evolution operator (Floquet
matrix) we can write

U(T)lgs) = e T |qs) (5.20)

where ¢g is the quasienergy of the state |gg). Because the Hamiltonian Hy is not

Hermitian, the time evolution operator is not unitary. This means that the Floquet
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eigenvalues do not necessarily have unit modulus, and thus the quasienergies ¢z are
in general complex. We can write the quasienergies as ¢z = Qg + il'3/2, where
3 = 1/I'g is the lifetime of the state |gg). Resonance states are easily identified by
plotting the Floquet eigenvalues, which we will denote as Ag = exp(—iggT’). Fig.
5.12 shows the Floquet eigenvalues calculated using both CCS and ECCS for the
driven Gaussian system with w = 0.0925 a.u. and ¢ = 0.038 a.u. The continuum
eigenvalues that were found with the CCS method form a well-defined spiral from
the origin out to the edge of the unit circle. These states are indicated by filled
circles in Fig. 5.12a. Resonance states are indicated by filled squares and lie off of
the continuum spiral. The continuum spiral is not as well-defined when the ECCS
method is used, as shown in Fig. 5.12b. However, only a few eigenvalues near the
origin appear to fall out of the spiral. This could cause some difficulty in identifying
broad (short-lived) resonances, but narrow (long-lived) resonances can still be easily
identified. Fig. 5.12 shows that CCS and ECCS appear to give the same resonance
eigenvalues.

The resonance eigenvalues should be independent of the scaling angle 6, while
the continuum eigenvalues rotate around the origin as # is changed. However, when
calculations are performed using a finite basis the resonance eigenvalues will be
weakly dependent upon 6 [74]. To accurately determine the quasienergies (and hence

the lifetimes) of these states it is important to optimize 6 by finding the stationary
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Figure 5.12: Floquet eigenvalues for the driven inverted Gaussian system with w =
0.0925 a.u. and ¢ = 0.038 a.u. The eigenvalues calculated using CCS are shown
in (a). In (b) the ECCS eigenvalues are shown. The scaling angle is § = 0.3 for
both sets of eigenvalues. Resonance states are indicated by filled squares, while
continuum states are indicated by filled circles.
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point of each resonance eigenvalue as 6 is changed. However, since our goal is not
an accurate quantitative determination of eigenvalues or lifetimes but a qualitative
understanding of the relationship between the quantum dynamics and the classical
motion, it is not critical that 6 be optimized for our calculations. Optimizing 6
presents a problem in this type of study because the optimal value of 8 is generally
different for different resonance states. We wish to study all of the resonance states
of the system and it is impossible to optimize € for all resonance states within a
single calculation of the Floquet matrix. We find that changing 6 between 0.3 and
0.7 results in no visible change in the plots of the resonance eigenvalues. There is also
no visible change in the Husimi distributions of the states. Not optimizing # may
lead to slight inaccuracies in the calculated lifetimes for the resonance states, but
we find that the error in the lifetimes is no greater than 4+0.17 which is acceptable
for our purpose here.

In Figure 5.13 we show the Husimi distributions of the three ECCS resonance
states indicated in Fig. 5.12b. Lifetimes of the three states are indicated in units
of the driving period T' = 27 /w. Filled circles indicate the locations of the classical
periodic orbits. The resonance state with the longest lifetime is almost indistin-
guishable from the ground state of the undriven system shown in Fig. 5.11a. The
state shown in Fig. 5.13b has a much shorter lifetime and is beginning to elongate

toward the positions of the unstable periodic orbits, with a peak of probability near
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the periodic orbit at (z = 6.98 a.u., p = 0). At this field strength the periodic orbits
are separated by approximately 3.3 a.u., which is only two times the width of the
wavepackets used in calculating the Husimi distribution. This makes it difficult to
tell whether or not the Husimi distribution has separate peaks on each periodic orbit.
The state shown in Fig. 5.13c has a very short lifetime and its Husimi distribution

is similar to that of a continuum state.

5.3 Resonance creation and scarring

Figure 5.14 shows the Floquet eigenvalues for ¢ = 0.065 and 0.09 a.u. Again, reso-
nance states are indicated by filled squares while continuum states are indicated by
filled circles. We see that the number of resonance states increases as € is increased,
from only three at ¢ = 0.038 a.u. (see Fig. 5.12) to five at ¢ = 0.09 a.u. This is
in agreement with BMK [67]. In the classical system, however, the stable structure
near (z = 0,p = 0) gets smaller as ¢ is increased. If the resonance states were
associated with this stable classical structure then some of the resonances should
disappear as ¢ is increased. Instead, the opposite behavior is found. To find the ex-
planation for the increase in the number of resonance states we examine the Husimi
distributions of the resonance states indicated in Fig. 5.14.

Figure 5.15 shows HDs for the four resonance states at ¢ = 0.065 a.u. Lifetimes

for the states are indicated in units of the driving period and the positions of the
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Figure 5.13: Husimi distributions of the resonance states at ¢ = 0.038 a.u. The res-
onance wavefunctions were calculated using ECCS with z, = 25 a.u. The locations

of periodic orbits are indicated by filled circles. The scaling angle is # = 0.3 for all
plots. The lifetimes for each state are given in units of the driving period 7' = 27 /w.
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Figure 5.14: Floquet eigenvalues for w = 0.0925 a.u. and two different field
strengths. The eigenvalues are calculated using ECCS with § = 0.3 and z; = 25
a.u. Resonance states are indicated by filled squares and continuum states by filled
circles. At these higher field strengths the number of resonance states is greater
than at ¢ = .038 a.u.
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periodic orbits are indicated by filled circles. At this field strength the separation
between the periodic orbits is about five times the width of the wavepackets used
to compute the Husimi distribution. The state with the longest lifetime looks very
much like the ground state of the undriven system. The states shown in Figs. 5.15b
and 5.15¢ show some similarities to the excited states of the undriven system, but
they have both been elongated in the direction of the unstable periodic orbits. The
state shown in Fig. 5.15b has a probability peak near the unstable periodic orbit
at (z = 16.67 a.u., p = 0), while the state shown in Fig. 5.15¢ has a peak between
the two unstable orbits. These two states appear to have become at least partially
associated with the unstable periodic orbits. The state shown in Figure 5.15d is the
newly created resonance and it has the shortest lifetime of the four. It has a modest
peak near the periodic orbit at (z = 9.09 a.u., p = 0).

Figure 5.16 shows HDs for four of the five resonance states at ¢ = 0.09 a.u.
At this field strength the separation of the periodic orbits is approximately eight
times the width of the wavepackets used for the Husimi distribution. The state
that closely resembles the undriven ground state (Fig. 5.16b) no longer has the
longest lifetime. Instead, the longest-lived state resembles the first excited bound
state of Hp, but with additional peaks near the periodic orbits at x = 11.52 a.u.
and z = 22.04 a.u. The state shown in Fig. 5.16d is similar to the state shown in

Fig. 5.15d, but with a more prominent peak near the periodic orbit at z = 11.52
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Figure 5.15: Husimi distributions for the four resonance states at ¢ = 0.065 a.u.
Lifetimes for each state are given in units of the driving period 7' = 27 /w. The
locations of the periodic orbits are indicated by filled circles.
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a.u. Note that the lifetime of this state is also greater than that of the state shown
in Fig. 5.15d.

At low values of € all of the resonances have their probability concentrated
near (z = 0,p = 0). At these low values of € the two unstable periodic orbits are
located close to the stable orbit near (z = 0,p = 0). If any resonance state was
associated with the unstable periodic orbits at such low field strengths it would be
difficult to tell from its Husimi distribution. As ¢ is increased the unstable periodic
orbits move toward larger values of x and some of the resonance states begin to
spread in that direction as well. At moderate values of ¢ some states show peaks
near the periodic orbit that is farthest from (z = 0,p = 0), close to z = 2. Only
at high values of ¢ do we begin to see a state that is peaked on the unstable orbit
that is closest to (z = 0,p = 0), near z = a. We believe that it is the association
between the resonances and the unstable periodic orbits that explains the creation
of resonance states as ¢ is increased. At low ¢ all three periodic orbits are too close
together to support many quantum states because they all occupy essentially the
same region of phase space. As € is increased the unstable periodic orbits move away
from the stable one and from each other. This allows quantum states to be associated
with these unstable orbits without occupying the same region of phase space as the
states associated with the stable orbit, so new resonance states are created. It is

the scarring of resonance states on unstable periodic orbits of the classical system
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Figure 5.16: Husimi distributions for the four of the five resonance states at ¢ = 0.09
a.u. The resonance state with the shortest lifetime is not shown because its Husimi
distribution is indistinguishable from that of a continuum state. Lifetimes for each

state are given in units of the driving period T" = 27 /w. The locations of the periodic
orbits are indicated by filled circles.
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that accounts for the increase in the number of resonance eigenstates, even as the
stable region in the classical phase space is diminished.

The behavior we see here would be unlikely to stabilize the ground state of
the undriven system against ionization in a high intensity field. This is because the
lifetime of the resonance state that seems most closely related to the ground state
(shown in Figs. 5.13a, 5.15a, and 5.16b) decreases as ¢ is increased. However, the
observed behavior could lead to stabilization for an excited state of the undriven
system. The excited states have most of their probability away from (z = 0,p = 0)
and would thus overlap with resonance states that are not peaked at that point.
Since these resonances grow in number and increase their lifetimes as ¢ is increased,
an excited state of the undriven system may become stabilized against ionization as

€ is increased.

5.4 Avoided crossings between resonances

Avoided crossings between resonance eigenvalues have been identified in this system
[65, 67]. Avoided crossings between Floquet eigenvalues play an important role
in multi-photon ionization [75] and the delocalization of Floquet eigenstates [76].
In this section we investigate the quantum dynamics at one avoided crossing to
determine if it leads to delocalization of the resonance eigenstates. Delocalization is

closely related to ionization in these systems because long-lived resonance states can
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only exist if they are localized within the interaction region. If avoided crossings lead
to delocalization they would also lead to a decrease in the lifetime, and eventually
the destruction, of the resonance states.

Figure 5.17 shows the Floquet eigenvalues of three resonance states at several
field strengths between ¢ = 0.076 and 0.085 a.u. Two of these states (labeled A and
B in Fig. 5.17 and indicated by filled circles and squares, respectively) are involved
in a prominent avoided crossing at a field strength of about ¢ = 0.0805 a.u. The
third resonance eigenvalue (labeled C' and indicated by filled triangles) passes close
by the other two at this field strength, but it is not clear from Fig. 5.17 if that
state is involved in the avoided crossing. The avoided crossing between states A
and B appears to be an isolated avoided crossing. This type of avoided crossing
has been shown to result in nothing more than an exchange of structure between
the two eigenstates [76, 58]. However, this effect has only been observed in closed
systems. In open systems the eigenvalues are complex and the structural changes
of the eigenstates as they pass through an isolated avoided crossing might lead to
delocalization of one or both of the states.

To determine the effect of this avoided crossing on the resonance states we
examine the Husimi distributions of the states A, B, and C shown in Figure 5.18.
As ¢ is increased from 0.078 a.u. to 0.0805 a.u. the states A and B undergo strong

mixing with each other. When the field strength is increased to 0.083 a.u. we find
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Figure 5.17: Floquet eigenvalues of three resonance states (labeled A, B, and C)
that are involved in an avoided crossing around ¢ = 0.0805 a.u. The points show
the eigenvalues for ¢ = .076,.078,.08,.0805,.081, .083, and .085 a.u. The numbers
shown in the plot indicate the field strengths at the end points of each eigenvalue
sequence. The lines are intended only as an aid to the eye.

137



that states A and B have completely exchanged their structure. State C does not
appear to have any significant structural changes in this range of field strengths.
However, it should be noted that state C has a significant increase in its lifetime as
¢ is increased from 0.078 a.u. to 0.083 a.u. States A and B exchange lifetimes as
well as structure, but the lifetimes of both states at ¢ = 0.083 a.u. are somewhat
smaller than the corresponding lifetimes at ¢ = 0.078 a.u. It may be that state C
somehow gains stability at the expense of states A and B, even though it does not
appear to pick up any of the structure of those states. Note that there are slight
differences between the Husimi distributions of states A and B at ¢ = 0.073 a.u.
and the corresponding distributions at ¢ = 0.083 a.u., but these may be due to a
small amount of mixing with state C' or with continuum states.

Figure 5.18 does not reveal any significant increase in the delocalization of
any of the resonance states. In fact, the structural changes of the Floquet states as
they pass through the avoided crossing are identical to those seen in closed systems
[76, 58]. This is not surprising, because in this avoided crossing it is the real parts
of the eigenvalues (determined by the angular position of the point in Fig. 5.18)
that avoid crossing, while the imaginary parts (determined by the distance of the
point from the origin in Fig. 5.18) actually cross. This is an indication that the
coupling between states A and B is stronger than the coupling of those states to the

continuum [75, 77]. Thus, the continuum plays no major role in the avoided crossing
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Figure 5.18: Husimi distributions for the states involved in the avoided crossings
shown in Fig. 5.17. The labels A, B, and C correspond to the labels in Fig. 5.17.
Lifetimes for each state are given in units of the driving period 7" = 27 /w. The top
row (a-c) shows Husimi distributions for the three resonance states at ¢ = .078 a.u.
The second row (d-f) shows the distributions at ¢ = .0805 a.u. The bottom row (g-i)
shows the distributions at ¢ = .083 a.u. States A and B appear to exchange their
structure as they pass through the avoided crossing. State C does not appear to
undergo any major changes in its structure, but its lifetime increases dramatically
as it passes through the avoided crossing. The locations of the periodic orbits at
each field strength are indicated by filled circles.
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and one would expect the behavior to be similar to that seen in closed systems. We
expect that the delocalization and destruction of resonance states occurs primarily
as the result of coupling between a resonance state and the continuum rather than
between resonance states [78].

Avoided crossings between resonance states may play an important role in
other phenomena in this system. For example, it has been shown in bound systems
that avoided crossings between Floquet eigenstates can result in increased high
harmonic generation (HHG). Avoided crossings contribute to increased HHG in two
ways. During the turn-on of a laser field avoided crossings can put the quantum
system into a superposition of Floquet states that may emit radiation at higher
frequencies than would be emitted by a single Floquet state [40]. Avoided crossings
also contribute to HHG by spreading the Floquet states over a wider range of energy,
thus allowing a single Floquet state to emit higher frequency radiation. For the type
of avoided crossing observed here the states are only delocalized near the exact field
strength at which the avoided crossing occurs, because at this field strength the
Floquet states have mixed their structure [76]. At that particular field strength,
though, this effect could lead to increased HHG. In fact, increased HHG has been

observed in previous studies of the avoided crossings in this system [65].
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Chapter 6

Destruction of Quasienergy

Resonance States

In the previous chapter we examined the creation of resonance states as the strength
of the driving field was increased in the driven inverted Gaussian system. In this
chapter we will study a system where the number of resonance states decreases as
the strength of the driving field is increased. An examination of this system by
Moiseyev and Korsch [79] revealed two mechanisms that led to the disappearance
of a discrete quasienergy eigenvalue from the spectrum of the system. The first
mechanism was an avoided crossing between two quasienergy states that pushed
one of the eigenvalues into the continuum. The second mechanism was a threshold

effect where one of the quasienergy states has an ionization energy that is an integer
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multiple of the photon energy, resulting in strong coupling between the state and
the continuum and eventually the destruction of the discrete quasienergy state.

In this chapter we examine the phase-space representations of resonance states
as they are destroyed by the threshold effect mentioned above. As the field strength
is increased the resonance states show a flow of probability out of the interaction
region and into the region of phase space occupied by the continuum states. This
is an indication of strong coupling to the continuum. We attempt to quantify this
coupling and show that it increases dramatically when the resonance state has an
ionization energy close to the energy of a photon in the field. In addition, we carry
out a close examination of two avoided crossings between a resonance state and
the continuum. We find that this particular type of avoided crossing is not solely
responsible for the destruction of the resonance state, although it may accelerate

the process.

6.1 Time-Dependent Rosen-Morse Model

The model we study is a simple one-dimensional, time-periodic system whose Hamil-
tonian is given by H = Ho+V (t), where Hy = p*/2+Vy(z) is the Hamiltonian of the
time-independent system and V' (f) represents a time-periodic driving field. In this
paper we choose for Vj(z) the Rosen-Morse potential, which has been used to model

the vibrational states of polyatomic molecules [80]. The Rosen-Morse potential (in
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atomic units) is given by:

Vo

Vola) = - cosh?(z/z¢)

(6.1)

For V (t) we choose

_ Voecos(wt)

Vi = cosh?(z/2)

(6.2)

with field strength € and frequency w = 1 a.u. This is the same model studied by
Moiseyev and Korsch [79], but we leave £ fixed at 1 a.u. and use V5 = 2 a.u. and
2o = 1/4/3 a.u. For these parameters the time-independent potential has only three
bound states. We choose these parameter values because the number of resonance
states in the system is small, which allows us to easily follow all of the resonance
states as ¢ is increased in the system. In addition, other studies have been done on
this system for these parameter values [81] and this allows us to directly compare
our eigenvalue calculations with published results.

Because the coordinate-dependent factor in the interaction potential has the
same form as the time-independent potential, the time-averaged potential supports
the same number of bound states as does the potential for ¢ = 0. Moiseyev and
Korsch exploited the simplicity of this model to identify the two mechanisms for
resonance destruction mentioned above [79]. In this work, though, the number of
resonance states is so small that the resonance eigenvalues are unlikely to have
an avoided crossing, rendering the avoided crossing mechanism ineffective. This

allows us to focus on the threshold effect and gain a clear picture of how this type of
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resonance destruction manifests itself in the phase-space structure of the quasienergy
eigenstates.

Before we begin exploring the quantum dynamics of this system it is important
to discuss the classical motion. Strobe plots of the classical motion are shown in
Figure 6.1 for several values of the field strength. Fig. 6.1a shows the bound classical
motion for the undriven system and the border of this region is the separatrix
between the bound and unbound motion. The interaction region (the region within
the separatrix) stretches out to about # = +7 a.u. before tapering off. As the field
strength is increased the trajectories near the separatrix become chaotic, while the
motion near the bottom of the potential well (z = 0, p = 0) remains regular. As ¢
is increased further this regular region shrinks and for field strengths greater than
€ =~ 1.2 a.u. no regular region is visible. The disappearance of the stable island near
(z = 0,p = 0) as € is increased is the underlying cause of the destruction of the
resonances in the quantum system, but the quantum dynamics are not completely

determined by this classical picture.

6.2 Resonance Destruction

As in our previous investigations of quantum systems we focus on the eigenstates of
the Floquet matrix (see App. A). In order to calculate the Floquet eigenstates of

this open quantum system, we employ the technique of complex coordinate scaling
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Figure 6.1: Strobe plots of the classical dynamics of the time-periodic Rosen-Morse
system at several field strengths. The stable region surrounding (z = 0,p = 0)
shrinks as € is increased. For ¢ greater than about 1.2 a.u. there is no detectable
stable region.
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described in Ch. 5 and in Refs. [69, 71, 70]. As in Ch. 5 we will use both regular
complex coordinate scaling (CCS) and exterior scaling (ECCS). We find that the
regular scaling over all space is best for calculating eigenvalues, but that the exterior
scaling is better for studying the structure of the eigenfunctions.

Our calculation procedure is identical to that used in Ch. 5. All calculations
are performed using a particle-in-a-box basis. For the regular scaling calculations
we used a box size of L. = 40 a.u. and 100 basis states. For the exterior scaling
calculations we used a larger box with L = 80 a.u. and 200 basis states. We first
calculate the eigenvalues and eigenstates of the time-independent Hamiltonian Hy.
We find, for our parameter values, that the system has three bound states with
energies —3/2, —2/3, and —1/6 a.u., which is in agreement with published results
[81]. We then use the eigenstates of Hy as a basis for our calculation of the Floquet
eigenstates of the time-dependent system.

Asin Ch. 5 we will use plots of the eigenvalues of the Floquet matrix to iden-
tify the metastable resonance states. The eigenvalues of the discretized continuum
states form a spiral that runs from the edge of the unit circle to the origin on these
plots. As the scaling angle @ is increased this spiral converges more rapidly to the
origin. The resonance eigenvalues, on the other hand, are not on the spiral and are
independent of the value of 8. In Figure 6.2 we show the Floquet eigenvalues for

the system (using CCS) for field strengths ranging from € = 0 to ¢ = 2.4 a.u. The
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resonance states are labeled A, B, C, and D. At ¢ = 0, state D is a quasibound
state with a very small positive energy while states A, B, and C' are bound states.
As € is increased the eigenvalues associated with these states move from the edge
of the unit circle toward the origin. For very high values of € the eigenvalues are
absorbed into the continuum spiral and the resonance states are destroyed. From
the figure it appears that states B and C' are destroyed at lower field strengths than
states A and D. Note that the eigenvalues in the continuum spiral move slightly as
€ is increased.

Figure 6.2 shows the movement of the eigenvalues for two different values
of the scaling angle 8. The reason for this is that for finite basis calculations the
resonance eigenvalues are weakly dependent on 6. To insure that the value of 8 did
not play a significant role in determining the character of the eigenvalue curves we
performed all of our calculations using two different values of . It is clear from
the figure that the general character of the curves does not depend on #. The only
significant differences occur where resonance eigenvalues approach the continuum
spiral. This difference occurs because changing the value of @ shifts the position of
the spiral. The most dramatic difference occurs where state C' encounters the spiral.
In Fig. 6.2a, state C appears to undergo an avoided crossing with a continuum state
which is then kicked out of the continuum spiral as state C' is absorbed into it. This

state in turn has an avoided crossing with another state which is kicked out of the
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Figure 6.2: Movement of eigenvalues for the time-periodic Rosen-Morse system with
w = 1. The eigenvalues are shown for ¢ ranging from 0 to 2.4 a.u. The filled squares
indicate the eigenvalues at ¢ = 0 and the filled circles indicate the eigenvalues at
¢ = 2.4. Both plots use regular complex scaling with a box size L = 40 a.u. and 100
basis states. In (a) the scaling angle is # = 0.3 and in (b) it is § = 0.45. The labels
A, B, C, and D indicate the eigenvalue curves associated with the four resonance
states. The eigenvalues on the continuum spiral move slightly as € is increased.
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spiral and falls in toward the origin. In Fig. 6.2b this process is not as clearly visible.
Close inspection reveals that the same process is taking place but much closer to the
continuum spiral than in Fig. 6.2a. This is not surprising as the spiral has changed
its position (as expected) in Fig. 6.2b.

Figure 6.3 shows the movement of the eigenvalues for the states calculated
using ECCS, which is the technique that we use to compute the eigenfunctions that
we will examine in the next section. Again, the same general features appear. For
these calculations the box size is larger, so the density of discretized continuum
states is greater. In Fig. 6.3b the eigenvalues of the resonance states are shown for
several field strengths without the continuum spiral. The points shown in this plot
are for values of € that are regularly spaced by increments of 0.3 a.u. from ¢ = 0
to € = 2.4 a.u. Some states do not have eigenvalues for high values of ¢ because
the states are no longer identifiable as resonance states at these high field strengths.
Fig. 6.3b indicates that state B is the first to be destroyed, followed by state C,

while states A and D remain outside of the continuum spiral at ¢ = 2.4 a.u.

6.3 Phase-space Picture

We wish to study the changes in the phase-space structure of the resonance eigen-
states as they are destroyed. We will again use the Husimi distribution (see App. B)

to represent the states in phase-space. We can calculate the Husimi distributions for
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Figure 6.3: Movement of eigenvalues calculated using exterior complex scaling, with
w =1, 8 = 0.45. The eigenvalues are calculated using a box size L. = 80 and 200
basis states with the coordinate complex-scaled only in the region |z| > 10 a.u. In
(a) the eigenvalues for all 200 states are shown for ¢ ranging from 0 to 2.4 a.u. In (b)
only the eigenvalues of the four resonance states are shown for € = 0 to 2.4 a.u., in
steps of 0.3 a.u. The numbers in the plot indicate the values of ¢ at the end points.
Eigenvalues for state B stop at ¢ = 1.8 a.u. because at higher field strengths that
state can no longer be identified. Eigenvalues for state C stop at ¢ = 2.1 a.u. for
the same reason. The lines in (b) are intended only to aid the eye.
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these exterior scaled states using the usual procedure because there is no complex
scaling in the interaction region. As explained in the previous chapter, as long as
we only compute Husimi distributions within the interaction region we do not have
to worry about the effects of the complex scaling.

Figure 6.4 shows the Husimi distributions for state A (as labeled in Fig. 6.3)
at several field strengths. State A is the ground state of the system at ¢ = 0. The
change in the phase-space structure of state A corresponds well to what is seen in the
movement of its eigenvalue. At low field strengths the state is only slightly distorted
from its original form and its eigenvalue remains close to the edge of the unit circle,
indicating that the state has a long lifetime. For very high values of ¢ the eigenvalue
has moved significantly toward the origin and the Husimi distribution of the state
is no longer well-localized within the interaction region. This is an indication that
it is coupling with the continuum states, which lie outside of the interaction region,
that leads to the destruction of this resonance state.

Figure 6.5 shows Husimi distributions for state B, the first excited state at
¢ = 0, for several field strengths. This state is the first of the resonance states to
be destroyed as ¢ is increased. This is indicated in the Husimi distribution of the
state which already shows a significant flow of probability out of the interaction
region for ¢ = 0.3 a.u. This process continues as ¢ is increased and at ¢ = 0.9 a.u.

the majority of the state’s probability is located outside of the interaction region.

151



4 (a)e=0 (bye=1.2 a. u.

2
5

G 0
o 2
4

4 (c)e=1.5 a. u.

-)

(a. u
o
)
(@)

p
N

Figure 6.4: Husimi distributions for state A at several field strengths. This state
remains localized within the interaction region for field strengths below ¢ = 1.5 a.u.
The lifetimes of the resonance states (in units of the driving period 7' = 27 /w) are
(b) 7=16.17, (c) 7= 5.5T, and (d) 7 = 1.27.
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Again, this corresponds to the rapid movement of state B’s eigenvalue curve from
the unit circle to the origin in Fig. 6.3. For € > 0.9 a.u. the eigenvalue of this state
has merged with the continuum spiral and the phase-space structure of the state is
indistinguishable from that of a discretized continuum state.

Figure 6.6 shows the Husimi distributions of state ', the second excited state
at € = 0, for several field strengths. The changes in the phase-space structure of this
state as € is increased are similar to those undergone by state B, although state C
is destroyed at a higher value of ¢ than is state B. State C' has an avoided crossing
with the continuum near € = 1.5 a.u. which we will examine in detail later in this
chapter.

Husimi distributions for state D, which is a quasibound state at ¢ = 0, are
shown in Figure 6.7. By € = 0.9 a.u. the phase-space structure of this state has
changed significantly from its structure at ¢ = 0. The state has become much
more localized within the interaction region. This corresponds with the emergence
of this state’s eigenvalue from the continuum spiral. As € is increased further the
state becomes increasingly localized within the interaction region, but then begins
to delocalize after ¢ = 1.8 a.u. This matches the turning point of the eigenvalue
trajectory for state D in Fig. 6.3, where the eigenvalue begins to move rapidly
toward the origin as € is increased.

The pattern observed for all four resonance states is that they maintain rel-
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Figure 6.5: Husimi distributions for state B at several field strengths. This state is
localized in the interaction region only at very low field strengths. At ¢ = 0.9 a.u.
this state is located almost entirely outside the interaction region. The lifetimes of
the resonance states (in units of the driving period T' = 27 /w) are (b) 7 = 6.47T, (c)
7 =1.67, and (d) 7 = 0.77.
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Figure 6.6: Husimi distributions for state (' at several field strengths. This state is
localized in the interaction region only for low field strengths. For ¢ = 1.2 a.u. it
is located mostly outside of the interaction region. The lifetimes of the resonance

states (in units of the driving period 7' = 27 /w) are (b) 7 = 3.1T, (¢) 7 = 1.5T,
and (d) 7 =0.97.
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Figure 6.7: Husimi distributions for state D at several field strengths. At ¢ = 0 this
state is in the continuum (it has positive energy). At higher value of ¢ it becomes
a resonance state and it becomes concentrated in the interaction region. For very
high € is begins to move out of the interaction region. The lifetimes of the resonance
states (in units of the driving period 7' = 27 /w) are (b) 7 = 5.5, (¢) 7 = 2.17T,
and (d) 7 = 1.7T.
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atively long lifetimes as long as their phase-space structure is well-localized and
isolated within the interaction region. As ¢ is increased the states become strongly
coupled to the continuum and their phase-space structure is altered so that it is
no longer localized. This is accompanied by a significant reduction in the lifetimes
of the states as their eigenvalues move toward the origin in Fig. 6.3. In the next
section we will investigate the causes of the strong coupling to the continuum that

leads ultimately to the destruction of these resonance states.

6.4 Coupling to the Continuum

The Husimi distributions discussed in the previous section indicate that it is strong
coupling of the resonance states to the continuum that leads to their destruction. To
quantify this coupling we must investigate a form of perturbation theory for these
Floquet states. If one knows the eigenstates for a particular field strength €, one can
calculate the eigenstates for a slightly higher field strength ¢ + d¢ using a form of
time-independent perturbation theory [24]. The term that leads to mixing of states

as € is increased is proportional to the time-average of the matrix

(aVo(z)|5), (6.3)

where |a) and |3) are Floquet eigenstates and Vj(z) is the time-independent Rosen-

Morse potential. To measure how strongly a resonance state is coupled to the
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continuum we define

B = D0 KalVo@)IB) | /| X2 HalVa(2)I8)* ], (6.4)

peC all

where « labels a resonance state, the first sum is over only the continuum states,
and the second sum is over all Floquet eigenstates. No time average is taken, but
we find that this quantity provides a good measure of the coupling of a resonance
state to the continuum.

Figure 6.8 shows R{, versus € for all four of the resonance states in this system.
The results are consistent with what was observed in the Husimi distributions and
eigenvalue trajectories. State A remains only weakly coupled to the continuum until
€ =~ 1.2 or so, then gradually becomes more strongly coupled to the continuum as
its Husimi distribution is delocalized (Fig. 6.4) and its eigenvalue moves toward the
origin (Fig. 6.3). State B starts off with relatively weak coupling to the continuum
but becomes strongly coupled after a small increase in ¢, which is consistent with
the destruction of this resonance state at low ¢ described earlier. State C' is strongly
coupled to the continuum at € = 0 (not surprising since the state is only weakly
bound), but its coupling does not increase significantly as ¢ is increased. This may
explain why state C survives for higher field strengths than does state B. State D
actually shows a decrease in its coupling to the continuum as € is increased and its
eigenvalue moves away from the continuum spiral. At high values of ¢ this trend

reverses as state D begins to delocalize (Fig. 6.7) and its eigenvalue moves toward
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the origin (Fig. 6.3).
To determine whether or not the strong coupling to the continuum is related
to photon absorption, we must have some measurement for the ionization energy of

the resonance states. For this purpose we examine the real part of the quantity

H, = (a|Hgla), (6.5)

which is the expectation value of the time-independent Hamiltonian for the reso-
nance state |a). Figure 6.9 shows the real part of H, versus ¢ for all four resonance
states. State A is midway between the one- and two-photon ionization energies at
€ = 0, which is consistent with its low value of R, at low field strengths. State A
crosses the one-photon ionization energy near ¢ = 1.2 a.u., which is very close to the
field strength at which its RS value begins to increase. State B, on the other hand,
starts out much closer to the one-photon ionization energy than does state A and
it rapidly moves closer to that energy as € is increased. This is consistent with the
rapid increase of R, for this state as € is increased. After about € = 0.9 a.u. state
B’s energy increases rapidly until it crosses the threshold and state B ceases to be
a resonance state. The picture is less clear for states C' and D. State C' starts with
an energy near the threshold, but moves toward lower energies as € is increased,
which is consistent with the relatively flat value of RS seen in Fig. 6.8c. However,
at € = 1.5 a.u. this state has an anomalously low value for Re H,. This may be the

result of an avoided crossing that the state goes through at this field strength. For
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Figure 6.8: Plots of R{, versus € for all four resonance states. R, is a dimensionless
quantity that indicates how strongly a given state is coupled to the continuum (see
Eq. 6.4). Strong coupling to the continuum results in a decrease in the state’s
lifetime as ¢ is increased.
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higher field strengths state C’s energy increases rapidly until it crosses the threshold
and merges with the continuum. State D’s energy remains close to the threshold
and does not show any clear correlation with the plot in Fig. 6.8d.

It is apparent that the destruction of the resonance states in this system is
the result of the threshold effect described in Ref. [79]. When a state’s ionization
energy approaches the photon energy as € is increased, that state’s coupling to the
continuum will increase. This causes the state to become delocalized in phase-
space and its lifetime to decrease. As € is increased further the state will gradually
become more delocalized, with a shorter lifetime, until it merges into the continuum

and ceases to be a resonance state.

6.5 Avoided Crossing

Overlapping avoided crossings can play a major role in delocalizing Floquet states in
bound systems [76]. Because of the complexity of an open system, it is important to
examine even isolated avoided crossings that involve resonance states to determine
what role they play in the destruction of these states. In this section we will examine
two avoided crossings between resonance states and the continuum. The first is
shown in Figure 6.10, which is a detail from Fig. 6.3a. Fig. 6.10 shows that the
original state C' (now labeled C; in Fig. 6.10) undergoes an avoided crossing with

one continuum state (labeled C3), which is then ejected from the continuum spiral
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Figure 6.9: Plots of the real part of H, versus € for all four resonance states. H,
is the expectation value of the time-independent Hamiltonian Hj for a quasienergy
state |a). Lines are drawn at the ionization threshold (H, = 0) and the one-photon
resonance (H, = —w). State C' has an anomalously low value of Re H, at ¢ = 1.5
a.u., which may be because that state is involved in an avoided crossing near ¢ = 1.5
a.u.
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while state C7; merges into that spiral. State C'; then has an avoided crossing with
a third state (C3) and then moves off toward the origin. In fact, what we have been
referring to as state C' is really two different states, €7 and C5. In the previous
sections we chose to follow C5 rather than C4 for ¢ > 1.43 because at these field
strengths state C'y is in the continuum spiral while state C5 is outside the spiral.

Figure 6.11 shows the Husimi distributions of the states C7, C3, and C'5 in
the vicinity of the avoided crossings. The most striking thing about these Husimi
distributions is how similar they are to each other even before the avoided crossings
take place. This is an indication that these states are already strongly coupled
before their eigenvalues approach each other. However, the phase-space structure
of these states does undergo some modification as they pass through the avoided
crossings. State €y becomes somewhat more localized and its lifetime increases as
it passes through the avoided crossing. State C's remains approximately constant in
both structure and lifetime throughout this range of ¢. State C's on the other hand,
loses nearly all of its probability in the interaction region and its lifetime decreases
substantially as it passes through the avoided crossing.

This avoided crossing does not seem to play a major role in the destruction
of the resonance state C because the state C' is already strongly coupled to the
continuum before the avoided crossing. However, the avoided crossing may modify

the way in which the destruction of the resonance takes place. In this case the
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Figure 6.10: Detail from Fig. 6.3a showing an avoided crossing involving state C'.
The curve labeled €' is the same as the curve labeled C' in Fig. 6.3. (5 labels the
state that has the first avoided crossing with Cy near ¢ = 1.42 a.u. and C'5 labels the
state that has an avoided crossing with C's near ¢ = 1.45 a.u. The markers indicate
the eigenvalues at € = 1.4, 1.433, and 1.5 a.u.
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Figure 6.11: Husimi distributions of the states involved in the avoided crossings
shown in Fig. 4.5. The lifetimes (in units of the driving period 7' = 27 /w) are
(a) 7 = 0.757, (b) 7 = 0.757, (¢) 7 = 0.597, (d) 7 = 0.837, (e) 7 = 0.627, (f)
T =0.58T, (g) 7 =0.917, (h) 7 = 0.407", and (i) 7 = 0.667".
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original state C' merges into the continuum spiral well away from the origin in Fig.
6.3, but as it does so it ejects one of the original continuum states. This state is now
a resonance state, since it is no longer in the continuum spiral, but its eigenvalue
moves rapidly toward the origin and it is no longer identifiable as a resonance state
for € > 2.1 a.u.

Figure 6.12 shows another avoided crossing, this time between state B (labeled
By in the figure) and a discretized continuum state (labeled Bg). This avoided
crossing occurs close to the origin in Fig. 6.3a, indicating that state B has a very
small lifetime when it passes through this avoided crossing. Figure 6.13 shows the
Husimi distributions of the two states at field strengths below and above the critical
field strength for the avoided crossing. The two states are nearly identical before and
after the avoided crossing, indicating that they are already strongly coupled prior
to the avoided crossing. Again, this avoided crossing does not seem to contribute to

the destruction of the resonance state.
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Figure 6.12: Detail from Fig. 6.3a showing an avoided crossing involving state B.
The curve labeled Bj is the same as the curve labeled B in Fig. 6.3a. By labels the
state that has an avoided crossing with By near ¢ = 1.76. The markers indicate the
eigenvalues at e = 1.55, 1.758, and 2 a.u.
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Figure 6.13: Husimi distributions of the states involved in the avoided crossing

(a)Bq, e=1. 55 a. u.

(b)By, €=1. 55 a. u.

shown in Fig. 6.12. The lifetimes (in units of the driving period 7' = 27 /w) are (a)
T =0.32T, (b) 7 = 0.26T, (c) 7 = 0.287, and (d) 7 = 0.267".
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Chapter 7

Conclusions and Discussion

We began our study of time-periodic quantum systems by introducing the driven
infinite square well. In Chapter 2 we investigated how the underlying classical
dynamics affects the radiation spectrum of the quantum system. The simulations
described in Chapter 2 mimic the procedure of a laboratory experiment, in that the
system is in an unperturbed initial state and is then subjected to a driving field
that is ramped on as a function of time. We found that initial quantum states that
were located in the classically regular region produce very little harmonic generation.
Initial states located in a resonance region produce a noisy spectrum with the highest
emitted frequencies determined by the energy range of the classical resonance. States
in the chaotic region produce high harmonics with a cutoff determined by the energy

range of that region. Avoided crossings in the quasienergy spectrum can lead to
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population transfer as the driving field is ramped on, putting the system into a
superposition of Floquet states that can radiate at high harmonics. This indicates
that avoided crossings might be used to engineer high harmonics in real systems. A
properly shaped pulse could produce a superposition of Floquet states that radiates
efficiently at high frequencies.

Continuing our study of the driven square well system, we deviated in Chapter
3 from mimicking an experimental procedure. Instead we focused on the structure
of the Floquet eigenstates. In Chapter 3 we identified two types of avoided crossings:
isolated (or sharp) and overlapping (or broad). Sharp avoided crossings cause the
structure of the two states involved to mix, but this mixing is undone as the field
strength is increased beyond the critical value for the avoided crossing. In a broad
avoided crossing the mixing among the states remains at field strengths beyond the
critical value. This can lead to the delocalization of the Floquet states that are
involved in the avoided crossing. Broad avoided crossings can also lead to increased
high harmonic generation in the radiation spectrum of an individual Floquet state,
while sharp avoided crossings result in only a transient increase in high harmonic
generation.

In Chapter 4 the concept of information entropy is used as a measure of the
localization of Floquet eigenstates. We showed that overlapping avoided crossings

lead to an overall increase in the entropy (and delocalization) of the system. How-
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ever, even after the system has passed through many overlapping avoided crossings
some states may remain localized. We identified the classical mechanism behind
this persistent localization at high field strengths. We discussed the relationship be-
tween classical chaos, avoided crossings, delocalization of eigenstates, and changes
in eigenvalue statistics. We ended our investigation of the driven square well by
proposing a matrix picture of the transition to chaos in this system. This picture
of how the quantum system evolves as the driving field is increased can consistently
account for the phenomena we have seen in our study.

We extended our study to include open systems in Chapter 5. We used the
technique of complex coordinate scaling to compute the Floquet eigenstates of an
inverted Gaussian well driven by a periodic field. The number of quasibound states
in this system increases as the driving field is increased, even though the classical
dynamics becomes increasingly unstable. We determined that the newly created
resonance states are scarred on unstable periodic orbits of the classical motion.
These periodic orbits move apart from each other as the field strength is increased
and this allows for the creation of new quantum resonance states. Also in Chapter
5 we closely examined the structural changes of two resonance states as they passed
through an avoided crossing with each other. The results were similar to that seen
in the sharp avoided crossing in Chapter 3.

In Chapter 6 we studied the destruction of resonance states in the time-
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periodic Rosen-Morse system. We found that the resonance states, initially well-
localized in the interaction region, experience a flow of probability out of the in-
teraction region as the driving field is increased. This phenomenon is the result of
coupling to the continuum which occurs because of resonant photon absorption. We
also examined two avoided crossings between resonance states and the continuum
and found that, because the resonance states are already strongly coupled to the
continuum before the avoided crossing occurs, there is relatively little change in the
structure of the eigenstates as they pass through the avoided crossing.

These investigations provide an overall picture of how a quantum system
changes its character as its classical analog becomes chaotic. For bound systems this
picture is described in detail in Chapter 4, although we have not yet established the
connection between periodic orbits and this matrix picture. Open systems present
some difficulties which are indicated in our studies of the inverted Gaussian and
Rosen-Morse systems. The interaction of resonance states with each other, as seen
in the avoided crossing of Chapter 5, can be similar to the interaction of states in
a bound system. However, the phenomena of resonance creation and destruction
cannot be effectively described by the matrix picture given in Chapter 4. In both
open and closed systems, though, it is clear that chaos in the classical system plays

an important role in determining the dynamics of the quantum system.
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Appendix A

Floquet Theory

Time-dependent quantum systems have no energy eigenstates because these systems
have Hamiltonians that are not invariant under an infinitesimal time translation.
However, the Hamiltonian of a time-periodic system is invariant under a discrete
time translation ¢ — ¢ + 7T, where T is the period of the time-dependent term in
the Hamiltonian. Because of this symmetry it is possible to define eigenstates for a
time-periodic quantum system that characterize the quantum dynamics in much the
same way that energy eigenstates characterize a time-independent quantum system.
These are the Floquet eigenstates [82].

Floquet eigenstates are eigenstates of the one-period time evolution operator

U(T). These eigenstates satisfy
U(T)|Q0) = e TIHQ,), (A1)

173



where €2, is the quasienergy associated with the Floquet state [Q2,). For a closed
quantum system the time evolution will be unitary and the Floquet eigenvalues,
e~®%T/h will have unit modulus. This means that the quasienergies of closed
systems will be real. Open systems that allow ionization will have a non-unitary
time evolution which leads to Floquet eigenvalues with less than unit modulus and
complex quasienergies with negative imaginary parts. It is apparent from Eq. A.1
that the real part of the quasienergy is only defined modulo woh = 27h/T.

The Floquet eigenvalues and eigenstates can be computed numerically by first
calculating the matrix U/(T') in some convenient basis (usually the eigenstates of the
Hamiltonian with the time-dependent term removed). To compute ﬁ(T) one simply
integrates the Schrédinger equation N times (where N is the number of basis states)
from t = 0 to t = 7 with initial conditions [¥(t = 0)) = |n), where |n) is the n'"
basis state (1 < n < N). The wavefunction at the end of each integration is a

vector of length N that forms the n'® column of the matrix U(T). A numerical

diagonalization of this matrix produces the eigenvalues and eigenvectors.
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Appendix B

The Husimi Distribution

Visualization of the quantum mechanical phase-space requires the construction of
a phase-space probability density for the various quantum eigenstates. The uncer-
tainty principle prevents the construction of a true phase space probability density
in the classical sense, but it is possible to construct a quasiprobability density that is
positive definite and gives a coarse-grained picture of the distribution of the quantum
state in phase-space. One such quasiprobability density is the Husimi distribution
[83]. To construct the Husimi distribution of a given quantum state one simply cal-
culates the overlap between the given state and a minimum uncertainty wavepacket
centered on a particular point (zg,po) in phase space. The wavepacket is given in

configuration space by [84]

1/4 T —x0)%  ipolz — z0
(z|zo, po) = <£) exp <—( ) + ol s )) ) (B.1)

202
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where o is a coarse-graining parameter that determines the relative widths of the
wavepacket in the z and p directions. Calculating |<'¢|m0,p0>|2 for a grid of phase
space points will produce a quasiprobability distribution that can be easily viewed
as a contour plot. These contour plots can be used to visualize the phase space
structure of quantum states. This structure can then be compared with structures

in a strobe plot of the classical phase space.
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Appendix C

Transformation from Radiation

to Length GGauge

The Hamiltonian of a one-dimensional system interacting with a driving field in the

radiation gauge can be written

H(q,p,t)= 1 (p _ £ sin(wt))2 + Vig) (C.1)

2m w

where ¢ is the canonical coordinate, p is the canonical momentum, m is the mass of
the particle, € is the strength of the driving field, and w is the frequency of the driving
field. The transformation to the length gauge is achieved through the generating
function [85]

Fy(q, Pt) =qP + qg sin(wt) (C.2)
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so that

- 3F2 - €
p=po = P+ " sin(wt) (C.3)
_0F,
Q=%3p =7 (C.4)

where () and P are the canonical coordinate and momentum in the length gauge.
This canonical transformation produces a new Hamiltonian (in terms of @) and P)
given by

or, 1

K=H+22=
+8t 2m

P? 4+ V(Q) + €Q cos(wt). (C.5)
This is the Hamiltonian of a one-dimensional system interacting with a driving field
in the length gauge. Note that ¢ = @ at all times, and p = P for t = 27n/w.

Because of this relationship between the canonical variables in the radiation and

length gauges, strobe plots created using the two different gauges will be identical.
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