
2

PHYSICAL REVIEW A, VOLUME 64, 033404
Phase-space picture of resonance creation and avoided crossings

T. Timberlake and L. E. Reichl
Center for Studies in Statistical Mechanics and Complex Systems, The University of Texas at Austin, Austin, Texas 7871

~Received 30 September 2000; revised manuscript received 29 January 2001; published 2 August 2001!

Complex coordinate scaling~CCS! is used to calculate resonance eigenvalues and eigenstates for a system
consisting of an inverted Gaussian potential and a monochromatic driving field. Floquet eigenvalues and
Husimi distributions of resonance eigenfunctions are calculated using two different versions of CCS. The
number of resonance states in this system increases as the strength of the driving field is increased, indicating
that this system might have increased stability against ionization when the field strength is very high. We find
that the newly created resonance states are scarred on unstable periodic orbits of the classical motion. The
behavior of these periodic orbits as the field strength is increased may explain why there are more resonance
states at high field strengths than at low field strengths. Close examination of an avoided crossing between
resonance states shows that the two states exchange their structure, as in bound systems. This phenomenon
might lead to interesting effects at certain field strengths.
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I. INTRODUCTION

The study of time-periodic quantum systems has attrac
considerable interest in recent years. One of the primary
tivating factors for this interest is the development of ult
high intensity lasers, which can produce electric fields wit
atoms that rival those produced by the atomic nucleus.
periments with these ultraintense lasers have led to the
covery of many new phenomena, such as high-harmo
generation@1#. Simple one-dimensional models of the inte
action between intense lasers and atoms have been sho
reproduce, at least qualitatively, many of these phenom
@2#. These models are especially interesting because
classical versions display chaotic motion@3#. In addition to
providing insight into recent experiments, the study of the
models can also provide insight into quantum-classical c
respondence.

One of the new phenomena observed in these system
the stabilization of atoms in intense laser fields. Stabilizat
is characterized by adecreasein the probability for an elec-
tron to ionize as the laser intensity isincreased. This effect
was first discovered in theoretical studies of the interact
between high-frequency lasers and atoms@4#, but this stabi-
lization has been observed in recent experiments@5,6#. Stud-
ies of the underlying classical dynamics of these syste
using one- and two-dimensional models have shown that
classical motion can often account for the increased stab
of the atom at higher laser intensities@6,7#.

The study of time-periodic quantum models is usua
carried out within the context of Floquet theory@8#. Floquet
eigenstates are eigenstates of the one-period time-evolu
operator and are the natural states for describing ti
periodic systems because the corresponding Floquet ei
values are conserved quantities. In some cases the Flo
states of the system can be localized on stable structure
the classical phase space@9#, and this can lead to stabiliza
tion because these Floquet states have very long lifetime
this case, stabilization would also be predicted by the cla
cal dynamics. However, there are often significant diff
ences between the classical and quantum dynamics of
otic systems. One of the most striking examples of this
1050-2947/2001/64~3!/033404~10!/$20.00 64 0334
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scarring, where quantum eigenstates have higher probab
to be found near the locations of unstable periodic orbits
the classical phase space@10#. The scarring of Floquet state
on unstable periodic orbits might make it possible for
quantum system to exhibit stabilization even when the c
responding classical dynamics is unstable. Some earlier s
ies indicate that stabilization can be associated with st
that are scarred on unstable or weakly stable periodic or
@11#.

In this paper we examine a time-periodic system w
one-space dimension that shows signs of stabilization. In
system the number of localized Floquet states, or resona
states, increases as the intensity of the driving field is
creased. In Sec. II we present the model and discuss
classical dynamics as well as prior studies of the quan
dynamics. In Sec. III we describe two different versions
complex coordinate scaling and compare their prediction
this system. In Sec. IV we investigate the relationship
tween the resonance states and the classical dynamics o
system. We find that the resonance states that are creat
the driving field is increased are associated with unsta
periodic orbits in the classical dynamics. We give an exp
nation, based on this association with periodic orbits,
why the number of resonance states increases as the
field is increased.

In Sec. V we carry out a detailed study of an avoid
crossing between two resonance states. Avoided crossin
time-periodic quantum systems can lead to signific
changes in the structure of the Floquet states@12,13#. Two
avoided crossings that occur close together can even lea
delocalization of Floquet states@13#. Since stabilization de-
pends upon the Floquet states remaining localized, avo
crossings may play an important role in destroying stabili
tion. Finally, in Sec. VI we summarize our findings.

II. DRIVEN INVERTED GAUSSIAN MODEL

The model we will study is an inverted Gaussian poten
interacting with a monochromatic driving field in the radi
©2001 The American Physical Society04-1
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T. TIMBERLAKE AND L. E. REICHL PHYSICAL REVIEW A 64 033404
tion gauge. The Hamiltonian of the system in atomic un
~which are used throughout the paper! is

H5
1

2 Fp2
e

v
sin~vt !G2

2V0 exp@2~x/a!2#, ~1!

whereV050.63 a.u., a52.65 a.u., e is the strength of
the driving field, andv is the field frequency. It is useful to
write this asH5H01V, where

H05
p2

2
2V0 exp@2~x/a!2# ~2!

and

V52
e

v
p sin~vt !1

e2

2v2
sin2~vt !. ~3!

Figure 1 illustrates the classical dynamics of this syst
for driving frequencyv50.0925 a.u. The strobe plots i
Fig. 1 are calculated by evolving a set of trajectories, all w
initial momentump50, over many cycles of the field an
plotting the location of each trajectory whent52pn/v ~af-
ter each full cycle of the field!. For e50 the motion is regu-
lar and bounded for negative energies. Motion at posit
energies is unbounded. Figures 1~a!–1~c! show the classica
strobe plots fore50.038, 0.065, and 0.09 a.u., respective

FIG. 1. Strobe plots of the classical dynamics for the driv
inverted Gaussian system. The initial conditions used to gene
the plots all lie on the linep50. a is the classical excursion pa
rameter for a free electron in the field. The locations of the perio
orbits ~stable and unstable! are indicated by filled squares.
03340
s
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As e is increased the region near (x50, p50) remains
stable, but the size of the stable region gets smaller ase is
increased. The filled squares in Fig. 1 indicate the locati
of the periodic points in the strobe plot and the arrows sh
x5a andx52a, wherea5e/v2 is the excursion paramete
of a free electron in the field. These periodic orbits we
located using a numerical search procedure based on a
dimensional Newton’s Method, with initial conditions atp
50 with x50, x5a, andx52a. Figure 1 shows that the
periodic orbit at (0,0) is stable while the other two period
orbits are unstable. Ase is increased the unstable period
orbits move toward larger values ofx, remaining close tox
5a andx52a. For very high-frequency driving fields two
of the periodic orbits can be stable while the third is u
stable. This is illustrated in Fig. 1~d!, which shows the clas-
sical strobe plot forv52 a.u. ande542 a.u. The value of
a in Fig. 1~d! is the same as in Fig. 1~c!, but at the higher
frequency the periodic-orbit located nearx52a is a stable
elliptic orbit surrounded by regular motion. The periodic o
bit at x5a is hyperbolic.

The quantum dynamics of this system has been the s
ject of several investigations during the past decade.
resonance states of this system were first calculated by B
sley and Comella in 1989@14#. More recent studies hav
focused on high-harmonic generation~HHG! in this system
@15#. It is the findings of Ben-Tal, Moiseyev, and Koslo
@16#, hereafter BMK, that have the most relevance to o
work. They found that the number of resonance states in
system increased as the field strength was increased ov
certain range. BMK explain the creation of new-resonan
states as the field strength is increased by analyzing the
namics of the time-averaged system in a reference frame
oscillates with a free electron in the driving field, known
the Kramers-Henneberger or KH frame@17#. They found
qualitative agreement in that the number of bound state
the time-averaged potential increases as the field streng
increased. However, the quantitative agreement was not
good. This is not surprising since the time-averaged KH
scription is only accurate for very high-frequency drivin
fields. Since the frequency of the driving field used by BM
and in this work (v50.0925 a.u.) is lower than the fre
quency of motion for two of the bound states in the undriv
system~0.4451 a.u. and 0.1400 a.u.!, the time-averaged KH
description is not quantitatively accurate. It is somewhat s
prising that the time-averaged KH description is qualitative
accurate because the classical motion of the system in
time-averaged KH frame is stable while the classical mot
of the exact system is largely unstable. Fora.1 the time-
averaged potential in the KH frame is a double well w
minima separated by approximately 2a. Motion in this
double well would be quite different from that seen in t
strobe plots in Figs. 1~a–c! ~although it would closely re-
semble the motion shown in Fig. 1~d!, which is at a fre-
quency that is high enough for the time-averaged KH
scription to be valid!. Our goal in this paper is to find an
alternative explanation for the creation of resonance state
e is increased in this system, an explanation that does
rely on the time-averaged KH description.
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PHASE-SPACE PICTURE OF RESONANCE CREATION . . . PHYSICAL REVIEW A64 033404
III. COMPLEX COORDINATE SCALING

In recent years the technique of complex coordinate s
ing ~CCS! has been used extensively in the study of op
quantum systems. In this section we will review two versio
of complex coordinate scaling~standard and exterior scaling!
and show how these techniques can be used to comput
resonance states of an open, time-periodic system. Re
from the standard and exterior scaling versions are c
pared, for both time-independent and time-dependent ca
lations.

A. Standard complex coordinate scaling

We first examine how the eigenvalues and eigenstates
time-independent open system can be calculated using
dard CCS, a technique that is examined in detail in R
@18,19#. In this paper we will use a basis of particle-in-a-b
states for our calculations. These states are defined by

^xun&5A2

L
sinS npx

L
2

np

2 D , ~4!

where 2L/2<x<L/2. Calculations using CCS are pe
formed just as they are in traditional quantum mechan
except that the coordinate is scaled in the Hamiltonian
that x→xeiu (0<u,p/4). Scaling the coordinate in thi
fashion allows us to represent resonance states, which ar
in the Hilbert space, using square integrable eigenfunctio
As a result of this scaling the new time-independent Ham
tonian is

H̃05H0~xeiu!5
p2e22iu

2
2V0 exp@2~xeiu/a!2#. ~5!

The kinetic-energy operator is easily evaluated using the
sis states in Eq.~4!. As long as our box is sufficiently larg
@L@2a/Acos(2u)# we find that

^mu2V0 exp@2~xeiu/a!2#un&5V~m1n!2V~ um2nu!,
~6!

where

V~ j !5
V0aApe2 iu

L
expS 2

j 2p2a2e22iu

4L2 D cosS j p

2 D . ~7!

Once these matrix elements are calculated, theH̃0 matrix can
be constructed. DiagonalizingH̃0 yields the energy eigenval
ues of the time-independent system as well as the eigen
tors

uc i&5 (
n51

N

cniun&. ~8!

Figure 2~a! shows the energy eigenvalues ofH0 calculated
without complex scaling (u50). The potential supports
three bound states atE520.4451, 20.1400, and
20.00014 a.u. Without complex scaling all eigenvalues
on the real axis. When the coordinate is scaled, though,
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Hamiltonian becomes non-Hermitian and it is possible
eigenstates of the scaled system to have complex eigen
ues. This can be seen in Fig. 2~b!, which shows the eigen
values calculated using CCS withu50.3. The bound state
eigenvalues remain on the real axis but the positive-ene
continuum states are rotated into the lower half plane by
angle of 2u. It is this rotation of the continuum that wil
allow us to identify resonances. No resonances exist for
system with HamiltonianH̃0.

B. Exterior complex coordinate scaling

The basic idea of exterior complex coordinate scal
~ECCS! is to scale thex coordinate by a factoreiu as in CCS,
but only in the regionuxu>xs where the potential is zero
Discontinuities at6xs are avoided by using a smooth scalin
relationx→F(x), where

F~x!5x1~eiu21!Fx1
1

2l
lnS cosh@l~x2xs!#

cosh„l~x1xs…!
D G ~9!

with l55 a.u. and xs525 a.u. This exterior scaling
method is given a thorough presentation in Refs.@19,20#.
Because the potential is zero in the region where the coo
nate is scaled, the potential matrix elements can be ca
lated without any complex scaling~i.e., using Eqs.~6! and

FIG. 2. The complex-scaled energies of the undriven inver
Gaussian system. The unscaled energies are shown in~a!, the CCS
energies in~b!, and the ECCS energies in~c!. The bound states o
the system have energies20.4451, 20.1400, and20.0001 a.u.
All calculations were performed using a box sizeL5200 a.u. and
400 basis states.
4-3
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T. TIMBERLAKE AND L. E. REICHL PHYSICAL REVIEW A 64 033404
~7!, but with u50). The scaled time-independent Ham
tonian then becomesH̃05H01VCAP , where

VCAP~x!5V0~x!1V1~x!
]

]x
1V2~x!

]2

]x2
~10!

acts as a complex absorbing potential. The coordin
dependent factors in Eq.~10! are defined by

V0~x!5
1

4
f 23~x!

]2f

]x2
2

5

8
f 24~x!S ] f

]xD 2

, ~11!

V1~x!5 f 23~x!
] f

]x
, ~12!

and

V2~x!5
1

2
@12 f 22~x!#, ~13!

where f (x)5]F/]x. Plots of F(x), V0(x), V1(x), and
V2(x) are shown in Refs.@19,20#.

We will again use a basis of particle-in-a-box states
calculateH̃0. Matrix elements for the potential-energy ter
are calculated without any complex scaling, while the kine
energy andVCAP matrix elements are calculated numerical
DiagonalizingH̃0 gives the complex-energy eigenvalues f
the exterior scaled system, which are shown in Fig. 2~c!.
Note that the bound-state eigenvalues are still on the
axis and most of the continuum states have been rotated
the lower half plane by 2u. However, several of the positive
energy states have been rotated into the lower half plan
considerably less than 2u. We refer to these as ‘‘partially
scaled’’ continuum states. Figure 3 shows the wave func
of one fully scaled continuum state and one partially sca
continuum state. The partially scaled state is strongly pea
nearx5xs and it is nonzero only within the region2xs<x
<xs , while the fully scaled state is zero within this regio
As xs is decreased toward 0, the number of partially sca
states decreases. Atxs50 the ECCS eigenvalues exact
match the CCS eigenvalues as expected.

Since would to examine the structure of the resona
states in the periodically driven system, it is important first
examine the structure of the eigenstates ofH̃0. We can ac-
complish this by calculating Husimi distributions@21# for
each of the three bound states. A Husimi distribution is
representation of a quantum state in a basis of minim
uncertainty Gaussian wave packets. It can be thought of
quasiprobability distribution of the quantum state in t
phase space. The Husimi distribution~HD! of a quantum
wave functionC(x) is defined as

G~x0 ,p0!5US 1

ps2D 1/4E
2`

2`

e2(x2x0)2/2s22 ip0xC~x!dxU2

,

~14!
03340
e-

o

c
.

al
to

by

n
d
ed

d

e

a
m

a

wheres is a coarse-graining parameter that determines
width of the Gaussian in thex andp directions. In this paper
we uses52 a.u., which gives each wave packet a width
1.41 a.u. inx and 0.35 a.u. inp.

Calculating Husimi distributions for complex-scale
states is not completely straightforward. One cannot sim
apply Eq.~14! to the states calculated using CCS because
wave functions are not functions of the real spatial coor
nate, but rather of the complex-scaled coordinate. Some
thors have attempted to rotate the complex-scaled states
into the real coordinate frame in order to calculate the H
simi distribution @22#. While this is a simple procedure t
carry out, as it simply involves replacingc(x) with c(xeiu)
in Eq. ~14!, it does not always work because the comple
scaling transformation is not generally reversible. We av
these problems by calculating Husimi distributions for ECC
states only. In our ECCS calculations the coordinate is o
complex scaled in the regionuxu.25 a.u., so for uxu
,25 a.u. there is no complex scaling of the wave functio
The ECCS method has been shown to produce the co
time evolution of a wave packet within the unscaled regio
with reflectionless absorption of the wave packet in t
scaled region@23#. This allows us to calculate the Husim
distribution of an ECCS state using Eq.~14!, provided that
we are only interested in the Husimi distribution in the u
scaled region. This procedure is similar to that used in R
@9#, in which the wave functions are calculated on a lar

FIG. 3. Wave functions of two ECCS continuum states. T
state shown in~a! is a partially scaled continuum state whose
genvalue is rotated by less than 2u from the real axis. The state in
~b! is a fully scaled continuum state whose eigenvalue is rotated
full 2u from the real axis. The partially scaled state is localiz
between2xs andxs (xs525 a.u.), while the fully scaled state i
almost excluded from this region. Both states are peaked near6xs .
4-4
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PHASE-SPACE PICTURE OF RESONANCE CREATION . . . PHYSICAL REVIEW A64 033404
grid of points inx and repeatedly projected onto a smal
grid as the wave function evolves. As in our method,
repetitive projection method induces nonunitary time evo
tion only on the parts of the wave function that are outs
some small range ofx and the Husimi distributions within
that range can be computed normally.

Husimi distributions for the three ECCS bound states
H̃0 are shown in Fig. 4. The Husimi distributions shown
Figs. 4~a! and 4~b! match those that are found without com
plex scaling the Hamiltonian and hence they are the cor
distributions. The distribution shown in Fig. 4~c! shows some
very slight asymmetry nearx5625 a.u. This is an effect o
the complex scaling and it is not seen in the unscaled bo
states. Except for this small deviation the distribution sho
in Fig. 4~c! is indistinguishable from the Husimi distributio
of the unscaled bound state.

C. Floquet calculations

As we have seen, complex coordinate scaling can be u
to calculate the firstN energy eigenstates ofH̃0. These eigen-
states can then be used as a basis to compute the one-p
time-evolution ~Floquet! matrix, Û(T), for the driven sys-
tem. This matrix is calculated by numerically integrating t
time-dependent Schro¨dinger equationN times from t50 to
t5T52p/v with initial conditionsuC(t50)&5uc i&, where
uc i& is the i th energy eigenstate ofH̃0. Diagonalization of
this matrix gives the Floquet eigenvalues and eigenstate~in
the basis of eigenstates ofH̃0).

The time-dependent Schro¨dinger equation for the driven
inverted Gaussian system is

FIG. 4. Husimi distributions of the bound states of the inver
Gaussian system. The bound state wave functions were calcu
using ECCS withxs525 a.u. The scaling angle isu50.3 for all
plots. These distributions match those calculated without comp
scaling, except for the very slight asymmetry at the far left a
right of ~c!.
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]t
uC&5H̃0uC&2

e

v
p̃ sin~vt !uC&1

e2

2v2
sin2~vt !uC&,

~15!

wherep̃ is the complex scaled momentum operator. Since
computations are performed in a basis of eigenstates ofH̃0

we must first calculate the matrix elements ofp̃. In calculat-
ing these matrix elements it is critical to recognize thatH̃0 is
not a Hermitian matrix and thus its eigenvectors do not h
the usual properties that eigenvectors of Hermitian matri
have. One cannot obtain the left eigenvectors of a n
Hermitian matrix simply by taking the complex conjugate
the right eigenvectors. In our case,H̃0 is complex symmetric
and the coefficients of the left eigenvectors are equal to~not
complex conjugates of! the coefficients of the right eigenvec
tors, so

^c i u5 (
n51

N

cni^nu. ~16!

The normalization of the eigenvectors is also different. F
our complex symmetric matrix the eigenvectors should
normalized so that the sum of the squares of thecni’s is 1,
rather than the sum of the absolute squares. With this in m
we can calculate the matrix elements forp̃ using

^c i u p̃uc j&5 (
m51

N

(
n51

N

cmicn j^mu p̃un&. ~17!

The^mu p̃un& are easy to calculate when CCS is used andp̃ is
simply pe2 iu. However, when ECCS is used those mat
elements are calculated numerically using

^mu p̃un&5
2 i\pn

L2
@P~m1n!1P~m2n!# ~18!

where

P~k!5E
2L/2

L/2

sinS kpx

L
2

kp

2 D f 21~x!dx ~19!

and f (x) is defined in Sec. III B.
Since the Floquet eigenstates are calculated in a bas

eigenstates ofH̃0 we can write them as

uqb&5(
i 51

N

dibuc i&. ~20!

Because they are eigenstates of the one-period ti
evolution operator~Floquet matrix! we can write

Û~T!uqb&5e2 iqbTuqb&, ~21!

whereqb is the quasienergy of the stateuqb&. Because the
HamiltonianH̃0 is not Hermitian, the time-evolution opera
tor is not unitary. This means that the Floquet eigenvalues

ted
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not necessarily have unit modulus, and thus the quasie
giesqb are in general complex. We can write the quasien
gies asqb5Vb1 iGb/2, wheretb51/Gb is the lifetime of
the stateuqb&. Resonance states are easily identified by p
ting the Floquet eigenvalues, which we will denote aslb
5exp(2iqbT). Figure 5 shows the Floquet eigenvalues c
culated using both CCS and ECCS for the driven Gaus
system withv50.0925 a.u. ande50.038 a.u. The con-
tinuum eigenvalues that were found with the CCS meth
form a well-defined spiral from the origin out to the edge
the unit circle. These states are indicated by filled circles
Fig. 5~a!. Resonance states are indicated by filled squa
and lie off of the continuum spiral. The continuum spiral
not as well defined when the ECCS method is used,
shown in Fig. 5~b!. However, only a few eigenvalues ne
the origin appear to fall out of the spiral. This could cau
some difficulty in identifying broad~short-lived! resonances
but narrow~long-lived! resonances can still be easily iden
fied. Figure 5 shows that CCS and ECCS appear to give
same resonance eigenvalues.

The resonance eigenvalues should be independent o
scaling angleu, while the continuum eigenvalues rota
around the origin asu is changed. However, when calcul
tions are performed using a finite basis the resonance ei
values will be weakly dependent uponu @24#. To accurately

FIG. 5. Floquet eigenvalues for the driven inverted Gauss
system withv50.0925 a.u. ande50.038 a.u. The eigenvalue
calculated using CCS are shown in~a!. In ~b! the ECCS eigenvalue
are shown. The scaling angle isu50.3 for both sets of eigenvalues
Resonance states are indicated by filled squares, while contin
states are indicated by filled circles.
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determine the quasienergies~and hence the lifetimes! of
these states it is important to optimizeu by finding the sta-
tionary point of each resonance eigenvalue asu is changed.
However, since our goal is not an accurate quantitative
termination of eigenvalues or lifetimes but a qualitative u
derstanding of the relationship between the quantum dyn
ics and the classical motion, it is not critical thatu be
optimized for our calculations. Optimizingu presents a prob-
lem in this type of study because the optimal value ofu is
generally different for different resonance states. We wish
study all of the resonance states of the system and it is
possible to optimizeu for all resonance states within a sing
calculation of the Floquet matrix. We find that changingu
between 0.3 and 0.7 results in no visible change in the p
of the resonance eigenvalues. There is also no visible cha
in the Husimi distributions of the states. Not optimizingu
may lead to slight inaccuracies in the calculated lifetimes
the resonance states, but we find that the error in the lifetim
is no greater than60.1T.

In Fig. 6 we show the Husimi distributions of the thre
ECCS resonance states indicated in Fig. 5~b!. Lifetimes of
the three states are indicated in units of the driving per
T52p/v. Filled circles indicate the locations of the class
cal periodic orbits. The resonance state with the longest l
time is almost indistinguishable from the ground state of
undriven system shown in Fig. 4~a!. The state shown in Fig
6~b! has a much shorter lifetime and is beginning to elong
toward the positions of the unstable periodic orbits, with
peak of probability near the periodic orbit at (x
56.98 a.u., p50). At this field strength the periodic or

n

m

FIG. 6. Husimi distributions of the resonance states ate
50.038 a.u. The resonance wave functions were calculated u
ECCS withxs525 a.u. The locations of periodic orbits are ind
cated by filled circles. The scaling angle isu50.3 for all plots. The
lifetimes for each state are given in units of the driving periodT
52p/v.
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bits are separated by approximately 3.3 a.u., which is o
two times the width of the wave packets used in calculat
the Husimi distribution. This makes it difficult to tell whethe
or not the Husimi distribution has separate peaks on e
periodic orbit. The state shown in Fig. 6~c! has a very short
lifetime and its Husimi distribution is similar to that of
continuum state.

IV. RESONANCE CREATION AND SCARRING

Figure 7 shows the Floquet eigenvalues fore50.065 and
0.09 a.u. Again, resonance states are indicated by fi
squares while continuum states are indicated by filled circ
We see that the number of resonance states increases ae is
increased, from only three ate50.038 a.u.~see Fig. 5! to
five ate50.09 a.u. This is in agreement with BMK@16#. In
the classical system, however, the stable structure neax
50, p50) gets smaller ase is increased. If the resonanc
states were associated with this stable classical structure
some of the resonances should disappear ase is increased.
Instead, the opposite behavior is found. To find the expla
tion for the increase in the number of resonance states
examine the Husimi distributions of the resonance states
dicated in Fig. 7.

Figure 8 shows HDs for the four resonance states

FIG. 7. Floquet eigenvalues forv50.0925 a.u. and two differ-
ent field strengths. The eigenvalues are calculated using ECCS
u50.3 andxs525 a.u. Resonance states are indicated by fi
squares and continuum states by filled circles. At these higher
strengths the number of resonance states is greater tha
e50.038 a.u.
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e50.065 a.u. Lifetimes for the states are indicated in un
of the driving period and the positions of the periodic orb
are indicated by filled circles. At this field strength the sep
ration between the periodic orbits is about five times
width of the wave packets used to compute the Husimi d
tribution. The state with the longest lifetime looks very mu
like the ground state of the undriven system. The sta
shown in Figs. 8~b! and 8~c! show some similarities to the
excited states of the undriven system, but they have b
been elongated in the direction of the unstable periodic
bits. The state shown in Fig. 8~b! has a probability peak nea
the unstable periodic orbit at (x516.67 a.u.,p50), while
the state shown in Fig. 8~c! has a peak between the tw
unstable orbits. These two states appear to have becom
least partially associated with the unstable periodic orb
The state shown in Fig. 8~d! is the newly created resonanc
and it has the shortest lifetime of the four. It has a mod
peak near the periodic orbit at (x59.09 a.u.,p50).

Figure 9 shows HDs for four of the five resonance sta
at e50.09 a.u. At this field strength the separation of t
periodic orbits is approximately eight times the width of t
wave packets used for the Husimi distribution. The state t
closely resembles the undriven ground state@Fig. 9~b!# no
longer has the longest lifetime. Instead, the longest-liv
state resembles the first-excited bound state ofH0, but with
additional peaks near the periodic orbits atx511.52 a.u.
andx522.04 a.u. The state shown in Fig. 9~d! is similar to
the state shown in Fig. 8~d!, but with a more prominent pea
near the periodic orbit atx511.52 a.u. Note that the lifetime
of this state is also greater than that of the state shown in
8~d!.

At low values ofe all of the resonances have their pro
ability concentrated near (x50, p50). At these low values

ith
d
ld
at

FIG. 8. Husimi distributions for the four resonance states
e50.065 a.u. Lifetimes for each state are given in units of
driving periodT52p/v. The locations of the periodic orbits ar
indicated by filled circles.
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of e the two unstable periodic orbits are located close to
stable orbit near (x50, p50). If any resonance state wa
associated with the unstable periodic orbits at such low fi
strengths it would be difficult to tell from its Husimi distri
bution. Ase is increased the unstable periodic orbits mo
toward larger values ofx and some of the resonance sta
begin to spread in that direction as well. At moderate val
of e some states show peaks near the periodic orbit tha
farthest from (x50, p50), close tox52a. Only at high
values ofe do we begin to see a state that is peaked on
unstable orbit that is closest to (x50, p50), nearx5a. We
believe that it is the association between the resonances
the unstable periodic orbits that explains the creation of re
nance states ase is increased. At lowe all three periodic
orbits are too close together to support many quantum st
because they all occupy essentially the same region of p
space. Ase is increased the unstable periodic orbits mo
away from the stable one and from each other. This allo
quantum states to be associated with these unstable o
without occupying the same region of phase space as
states associated with the stable orbit, so new reson
states are created. It is the scarring of resonance state
unstable periodic orbits of the classical system that acco
for the increase in the number of resonance eigenstates,
as the stable region in the classical phase space is di
ished.

The behavior we see here would be unlikely to stabil
the ground state of the undriven system against ionizatio
a high-intensity field. This is because the lifetime of the re
nance state whose Husimi distribution most closely
sembles that of the ground state@shown in Figs. 6~a!, 8~a!,

FIG. 9. Husimi distributions for four of the five resonance sta
at e50.09 a.u. The resonance state with the shortest lifetime is
shown because its Husimi distribution is indistiguishable from t
of a continuum state. Lifetimes for each state are given in units
the driving periodT52p/v. The locations of the periodic orbit
are indicated by filled circles.
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and 9~b!# decreases ase is increased. However, the observe
behavior could lead to stabilization for an excited state of
undriven system. The excited states have most of their p
ability away from (x50, p50) and would thus overlap with
resonance states that are not peaked at that point. Since
resonances grow in number and increase their lifetimese
is increased, an excited state of the undriven system m
become stabilized against ionization ase is increased.

V. AVOIDED CROSSINGS BETWEEN RESONANCES

Avoided crossings between resonance eigenvalues h
been identified in this system@15,16#. Avoided crossings be-
tween Floquet eigenvalues play an important role in mu
photon ionization@25#. Overlapping avoided crossings i
closed systems can lead to the delocalization of Floq
eigenstates, while isolated avoided crossings result in o
transient changes in the structure of the Floquet states@13#.
Delocalization is closely related to ionization in open sy
tems because long-lived resonance states can only ex
they are localized within the interaction region. Therefore
is important to understand how avoided crossings affect
structure of Floquet states in open systems. In this section
investigate an isolated avoided crossing to determ
whether or not the change in the structure of the Floq
states is similar to that seen in closed systems.

Figure 10 shows the Floquet eigenvalues of three re
nance states at several field strengths betweene50.076 and
0.085 a.u. Two of these states~labeledA andB in Fig. 10 and
indicated by filled circles and squares, respectively! are in-
volved in a prominent avoided crossing at a field strength
about e50.0805 a.u. The third resonance eigenvalue~la-
beledC and indicated by filled triangles! passes close by th
other two at this field strength, but it is not clear from Fig.
if that state is involved in the avoided crossing. The avoid
crossing between statesA and B appears to be an isolate

s
ot
t
f

FIG. 10. Floquet eigenvalues of three resonance states~labeled
A, B, and C) that are involved in an avoided crossing arounde
50.0805 a.u. The points show the eigenvalues fore50.076, 0.078,
0.08, 0.0805, 0.081, 0.083, and 0.085 a.u. The numbers show
the plot indicate the field strengths at the end points of each eig
value sequence. The lines are intended only as an aid to the e
4-8
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avoided crossing. This type of avoided crossing has b
shown to result in nothing more than an exchange of str
ture between the two eigenstates@13,26#. However, this ef-
fect has only been observed in closed systems. In open
tems the eigenvalues are complex and the structural cha
of the eigenstates as they pass through an isolated avo
crossing might lead to delocalization of one or both of t
states.

To determine the effect of this avoided crossing on
resonance states we examine the Husimi distributions of
statesA, B, andC shown in Fig. 11. Ase is increased from
0.078 a.u. to 0.0805 a.u. the statesA and B undergo strong
mixing with each other. When the field strength is increas
to 0.083 a.u. we find that statesA and B have completely
exchanged their structure. StateC does not appear to hav
any significant structural changes in this range of fi
strengths. However, it should be noted that stateC has a
significant increase in its lifetime ase is increased from
0.078 a.u. to 0.083 a.u. StatesA andB exchange lifetimes as
well as structure, but the lifetimes of both states ate
50.083 a.u. are somewhat smaller than the correspon
lifetimes ate50.078 a.u. It may be that stateC somehow
gains stability at the expense of statesA andB, even though
it does not appear to pick up any of the structure of th

FIG. 11. Husimi distributions for the states involved in th
avoided crossing shown in Fig. 10. The labelsA, B, andC corre-
spond to the labels in Fig. 10. Lifetimes for each state are give
units of the driving periodT52p/v. The top row~a–c! shows
Husimi distributions for the three resonance states ate
50.078 a.u. The second row~d–f! shows the distributions ate
50.0805 a.u. The bottom row~g–i! shows the distributions ate
50.083 a.u. StatesA and B appear to exchange their structure
they pass through the avoided crossing. StateC does not appear to
undergo any major changes in its structure, but its lifetime increa
dramatically as it passes through the avoided crossing. The l
tions of the periodic orbits at each field strength are indicated
filled circles.
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states. Note that there are slight differences between the
simi distributions of statesA andB at e50.073 a.u. and the
corresponding distributions ate50.083 a.u., but these ma
be due to a small amount of mixing with stateC or with
continuum states.

Figure 11 does not reveal any significant increase in
delocalization of any of the resonance states. In fact,
structural changes of the Floquet states as they pass thr
the avoided crossing are identical to those seen in clo
systems @13,26#. This is not surprising, because in th
avoided crossing it is the real parts of the eigenvalues~de-
termined by the angular position of the point in Fig. 10! that
avoid crossing, while the imaginary parts~determined by the
distance of the point from the origin in Fig. 10! actually
cross. This is an indication that the coupling between stateA
and B is stronger than the coupling of those states to
continuum@27#. Thus, the continuum plays no major role
the avoided crossing and one would expect the behavio
be similar to that seen in closed systems. We expect tha
delocalization and destruction of resonance states occurs
marily as the result of coupling between a resonance s
and the continuum rather than between resonance states@28#.

Avoided crossings between resonance states may pla
important role in other phenomena in this system. For
ample, it has been shown in bound systems that avoi
crossings between Floquet eigenstates can result in incre
HHG. Avoided crossings contribute to increased HHG in tw
ways. During the turn on of a laser field avoided crossin
can put the quantum system into a superposition of Floq
states that may emit radiation at higher frequencies t
would be emitted by a single Floquet state@29#. Avoided
crossings also contribute to HHG by spreading the Floq
states over a wider range of energy, thus allowing a sin
Floquet state to emit higher frequency radiation. For the ty
of avoided crossing observed here the states are only d
calized near the exact field strength at which the avoid
crossing occurs, because at this field strength the Floq
states have mixed their structure@13#. At that particular field
strength, though, this effect could lead to increased HHG
fact, increased HHG has been observed in previous studie
the avoided crossings in this system@15#.

VI. CONCLUSION

We utilize the complex coordinate Floquet method to c
culate resonance states for an inverted Gaussian pote
driven by a monochromatic field. As has been previou
observed, we find that the number of resonance states
creases as the field strength is increased. This behavior in
quantum system seems to be opposite to what is observe
the classical system, where the dynamics becomes incr
ingly unstable as the field strength is increased. An exam
tion of the Husimi distributions of the resonance states in t
system shows that the newly created resonances state
associated with unstable periodic orbits in the classical m
tion. This scarring of the eigenstates on unstable perio
orbits has been seen in other systems and it represents o
the most significant deviations of quantum dynamics fro
the corresponding classical dynamics. In this system, re

in

es
a-
y

4-9



a
a

fie
an
n

se
te
id
y
e
o

be-
type
cts

on

r-
eir

T. TIMBERLAKE AND L. E. REICHL PHYSICAL REVIEW A 64 033404
nance eigenstates are scarred on unstable periodic orbits
the movement of the periodic orbits in the phase space
lows for the creation of new resonance states as the
strength is increased. The creation of these new reson
states might help to stabilize the system against ionizatio
intense fields.

An avoided crossing between resonance states is clo
examined and it is found that the two states approxima
exchange their structure as they pass through the avo
crossing. This is similar to the behavior seen in closed s
tems, which is to be expected because the coupling betw
the two states involved is much stronger than the coupling
those states to the continuum. Coupling to the continuum
C
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,
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more likely to destroy resonance states than is coupling
tween two resonance states. Avoided crossings of the
studied here, however, could lead to many interesting effe
such as increased high-harmonic generation.
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