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High harmonic generation in systems with bounded chaos
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In this paper we study the radiation spectrum generated by the quantum dynamics of a double resonance
model and a driven square well system. We use Floquet theory to analyze the radiation generated by these
systems. We present the results of numerical simulations that indicate a connection between high harmonic
generation and underlying classical chaos in these models. Our results provide a means of predicting the
radiative characteristics of multilevel quantum systems subject to a strong periodic driving force.
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PACS numbses): 05.45+b, 42.50.Hz, 42.65.Ky

[. INTRODUCTION cal force fields. The classical counterpart of such systems can
exhibit a transition to chad®]. It is well known that chaos

High harmonic generatio(HHG) by atoms subject to in- in a classical system will allow a particle to diffuse through-
tense laser pulses is a major topic in nonlinear atomic physeut the chaotic region, sampling a range of energies. By
ics. The characteristic radiation spectrum of strongly driverfransforming the classical Hamiltonian of a particle subject
atomic systems consists of a rapid decrease in radiated intef & strong driving force to action-angle variables, the Hamil-
sity over the first few laser harmonics followed by a plateautonian, in general, will take the form
of approximately equal intensity peaks out to an abrupt cut- w
off. For atoms subject to low frequency driving fields, H=EoJ)+F 2 Xpn(J)cogmo—wt), (1.
<I,, wherew is the driving frequency and, is the ion- m= —co

ization potential, electron ionization and subsequent recom- Ciom
bination account for the cutoff location. If the driving fre- where|6|<2m andxp(J)=m""/5"X(J,6)cosme)de. Thus

; ; ; the driving field induces an infinite series of nonlinear pen-
uency is lower than the tunneling frequency, given b ) , ; ;
d y g 'red v, 9 ydqumI|ke resonances with location given byEy/dJ

F/ 21, whereF is the field strength, the electron will tun- ~w/m. An isolated resonance will have classical width

nel through the quasistatic barrigt]. It may gain energy 112 .y )
from the laser field and recombine, emitting high frequencyA‘]mocF - For sufficiently strong fields these resonances

tunnels. The maximum energy that can be gained by an eleg, hje a wider range of energies, gain kinetic energy from
tron that returns to the core is 3¢, whereUy is the cycle  he driving field, and radiate harmonics of the driving fre-
averaged electron energy in the laser figfd/4wg [2-4l.  quency. Averbukh and Moiseyeid0] found that the har-
Thus a two-step ionization and recombination process aamonic cutoff in the double resonance model is given by the
counts for the experimentally observed cutoff law. extent in energy of the underlying classical chaos.

However, high harmonic generation has proved general to In this paper we use Floquet analyf$s11,13 to examine
all known strongly driven quantum systems, including thosethe relationship between chaos in classical systems and HHG
that allow no ionization. Several examples are the driverin their quantum counterpart. We will look first at the clas-
two-level model[5], the driven triangular wel[6], and the sical and quantum versions of the paradigm system for the
driven anharmonic oscillatdi7]. The location of the cutoff ~generation of chaos: the double resonance model. This model
in these systems is clearly not due to ionization and recomis important for theoretical studies of renormalization in clas-
bination. Recently, Gauthest al.[8] have shown the cutoff Sical and quantum dynamid®,13]. Then we carry out a
in the two-level model to be given by .~ w./2+20Q, Study of the classical and quantum dynamics of the driven
where Q is the Rabi frequency @F/% and fiw,,=E, Sduare well, which may be more easily rea_Ilzed in laboratory
—E,. As usuald is the off-diagonal dipole matrix element experiment$14]. Both these systems contain regions of con-

andE, andE, are the energy eigenvalues. Th@ 2erm can fined chaos.
be viewed as arising from the dynamical Stark shift of either
state. Thus this term represents the kinetic energy attainable
from the driving field. This sets the gain curitee frequency In this section, we examine the classical and quantum
range over which the system may resppadalogous to the dynamics of the simplest Hamiltonian system that exhibits a
3.1, term in the tunneling regime, although the cutoff transition to chaos, the double resonance mfeid!3,15,18.
dependence on field strength is quite different. We use Floquet theory to make the connection between
In this paper, we consider mechanisms for HHG in mul-HHG and classical structures, similar to the analysis of Aver-
tilevel guantum systems driven by time periodic semiclassibukh and Moiseyey10]. However, we consider the radiation

1. DOUBLE RESONANCE MODEL
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larger primary has a maximal kinetic energy range deter-
mined by the width of the resonance. The kinetic energy
accessible to a classical particle in the chaotic region is
J2 J2—J2../2, wherel, ., andJm, are the upper and lower
bounds in action of the chaotic strip. Dividing this by the
driving frequency gives the maximum expected harmonic
frequency component of the particle motion. From the strobe
plot, we see this is near the tenth harmonic. For the particle
trapped inside thevi; resonance, the classically predicted
cutoff is near the fifth harmonic.

B. Quantum model

FIG. 1. Strobe plot showing the classical phase space of the We now study the radiation generated by the quantum

double resonance model with paramet¥rs=4.5, V,=V,/4, M, version of the paradigm system. Takidg—>3= —i(9/96)
=1, M,=3, andwy=9.7. TheM, resonance, located 84~9.7, th hidinaer ion m '
has overlapped with thil, resonance. Th#, resonance, initially e Schrdinger equation becomes
located atJ,~wy/M,=3.23, has been almost completely de- IV (6,1) 1 2V (6,t)
stroyed. i A ’

at 2 9p?

+ §(t)[VlcOS(M 10_ (,l)ot)

produced by superpositions of Floquet states excited during
the turn-on of the periodic interaction and the effect of chaos
on those superpositions.

+V2C01M20_0)0t)]\1}(0,t), (23)

whereé(t) is the turn-on function.

For all of the calculations in this paper we will use a
turn-on function given by
The double resonance Hamiltonian consists of a rotor

A. Classical model

driven by a pair of traveling sinusoidal potential waves sinz(w—ot), t<27w
L ()= o @4

=51 T V1cosM 16— wot) +V,C08 M6 — wot), 1, t>2mj

(2.1) wo '

where J is the angular momentum of the rotoy  wherev is the number of cycles in the turn-on. After the
(|6|=<2mr) is its angle| is the rotor's moment of inertia, the turn-on, the Hamiltonian is invariant under the discrete time

V; are the wave amplitudes, and the wave speedséare {ranslation symmetry—t=2m/wo. This allows us to ana-
=wo/M;. We rescale this Hamiltonian to dimensionless!yze the system in terms of eigenstates of the unitary one-
units by takingd—Jf, t—th/l, Vi—Vih2/1, wg—wol/f,  Period time evolution operatofFloquet states[11,12. In

andH—H#%2/1. This yields order to obtain the Floquet states, we represent the full time-
periodic Hamiltonian in the rotor basis. Then we integrate
J2 the Schrdinger equatiorN times (N is the number of basis
H= §+V1cos{M10—wot)+V2005{M20— wot). state$ from t=0 to t=T with initial conditions| ¥ (t=0))
2.2 =|n) (L=n=<N), where|n) is the nth unperturbed energy

eigenstate. Each integration gives one column of the matrix
This system models the dynamics in the vicinity of a pair 0frepresentatio_n of the unitary time evolution operator._Eigen-
nonlinear resonances, as in the action-angle Hamiltonian fofectors of this operator are the Floquet stg@s), which
an atom subject to a strong periodic driving field. It has twoSatisfy
primary resonances that may interact, producing higher-order R A
nonlinear resonances and chaos in the phase space. The pri- U(T) [Q,)=eT[Q,), (2.9
mary resonances lie dt=wy/M; with i=1,2.

Figure 1 shows the phase space for this system usinghere(,, is the Floquet eigenvalu@r quasienergy Solv-
M;=1,M,=3, 0,=9.7,V,=4.5, andV,=V,/4. The reso- ing the eigenvalue problem, we obtain representation of
nances are located a§~9.7 andJ,~3.23. From the strobe Floquet state$9]. These are steady states of the atom plus
plot we see that there are three distinct phase space structui@dving field, in analogy with steady states of the time-
for this field strength. There are regions above and below thindependent problem. After the turn-on, we project the wave
resonances corresponding to integrable or “regular” motion function onto the Floquet basis to determine which states are
The primary nonlinear resonances have begun to overlap arbpulated. We then use the Husimi distributisee Appen-
create a network of higher-order resonances. This producestix A) on quantum-mechanical phase space to relate these
regular region within the large primary resonance, surstates to classical structures.
rounded by a chaotic strip in the phase space. A particle that Expanding the Schrdinger equation in free rotor eigen-
starts out in the chaotic region may sample energies througlstates( 8|n)= (1/y2m)e"?, we obtain an ordinary differen-
out this region, while a particle trapped in the remainingtial equation for the time-dependent coefficients:
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) n2 Vl ) . T T T T T
i’pn:?wn'}'?(e_lwotwnfMl'*'elwot¢n+M1) -
E
V2 —iwgt iwgt r:
+ 7(9 0 lﬂn—MZ'i'e 0 ¢n+M2)- (2.6) B
3
The acceleration time series is given by =
@
(POIOv ()= VEOWO8, 27
where 7
ka:% [2(kIA[E61)GIRID = (kIRTDGTRT 6l &
3
—(kloliHI{HIT] (2.8 =
0
and -
T, k=l R
Oa=(klO]l)=1 i Kkl 2.9 :
k—1 4
£
We show the radiation spectrum for this system obtained §
from integrating the Schrdinger equation with parameter =
values identical to the classical case. Figure 2 shows the log %
power spectrum fowy=9.7 and various initial atomic states. ) \ . . . ,
These show the radiative characteristics for the atomic sys- - 00 5 10 15 20 25 30
tem prepared in each of the three distinct classical regions. In w/uwo

each case, we turn on the interaction with the’ samping FIG. 2. Radiation spectrum for states initially localized to the

.?.\r/]er 16 CSI/CIef’.’ fOItI.OWEd b)_/ con Star:(t:agtzlgl’;?sn?{hizcgﬁéf:mree distinct classical regions of the double resonance model. For
e l.ac‘ée e_ra lon _Ime ?ﬁ”es IS ca ) timated beach case, the rotor is placed in an initial statend the interaction
amp ltude integration. The power spec_trum IS estmated by ramped on with a 16 cycle turn-on. The typical spectrum corre-

taking the modulus squared of the Fourier transfgtfw) of

. . ) sponding to “regular” regions is shown ita) wheren=20. The
the acceleration time series. Note that we do not expect eV&nical spectrum for “chaotic” initial conditions is shown ib),

harmonics to be forbidden, as in realistic atomic systemSyheren=3. The radiation produced by a superposition of “reso-
since the Hamiltonian is not invariant undé+ — 6. nance” states is shown ift), wheren=8.

Figure 2a) shows the spectrum typical of a quantum sys-
tem excited into a state or set of states that has regular usupport across the chaotic region, generates only pure har-
derlying classical dynamics. There is no significant harmonianonics of the driving fieldsee Appendix B with the cutoff
generation. The individual Floguet states, which are the stagiven by the width in energy of the chaotic strip. The pres-
tionary states of the atom plus laser system, have suppoeince of shifted harmonics is an indication that multiple
localized to a narrow band of atomic states. Thus a singlproadened Floquet states are contributjd§,20. Figures
excited Floguet state will possess a narrow gain cysee  3(a)—3(c) show the Floquet states involved in production of
Appendix B. the radiation seen in Fig.(B).

Figure 2Zb) shows a typical spectrum for a quantum sys- Figure Zc) shows the radiation spectrum of a typical
tem with underlying classical chaos: Radiation is producedatomic system trapped in a single nonlinear resonance. It has
with the gain curve approximately given by the width in many shifted harmonicg¢hyper-Raman lingsand a cutoff
kinetic energy of the chaotic strip. The spectrum shows aiven by the width in energy of the nonlinear resonance. For
cutoff near the tenth harmonic, in agreement with the classithe M, primary resonance, the classically predicted cutoff is
cal prediction. Projection of the initial wave functidafter  at about the fifth harmonic, which agrees well with the cutoff
turn-on onto the Floquet basis shows several states witlin Fig. 2(c). The many shifted peaks indicate the excitation
reasonable population. This is not unexpected since the state many Floquet states associated with the resonance. Fig-
do not evolve perfectly adiabatically for the finite turn-on. ures 3d)—3(f) show the Husimi distributions for several of
The quasienergies of the initially populated states determinthese “resonance’” states.
the detailed structure of the radiation spectrum without af- Our results describe the radiative characteristics of Flo-
fecting the location of the cutoff. This is because Floquetquet states associated with these three distinct regions in
states may become “broadened” across the classically irelassical phase space. The results we have seen for the
regular region, gaining support on atomic states throughoutouble resonance model should be applicable to all strongly
the chaotic regioil7,18. Thus a single Floquet state, with driven multilevel systems, where regular regions, nonlinear
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FIG. 3. Husimi distributions of Floquet states responsible for
radiation shown in Figs.(®)—2(c). In (a)—(c), we show the set of
Floguet states responsible for the harmonic generation shown i
Fig. 2b). In (d)—(f) we show the “nonlinear resonance” Floquet
states responsible for radiation shown in Fi¢c)2

resonances, and chaos coexist in phase space.

Ill. DRIVEN PARTICLE IN A SQUARE WELL POTENTIAL

The rest of the paper will be devoted to studying a particle
confined to an infinitely deep square well and driven by a
time-periodic field. The infinite square well is representative
of a class of systems whose potential is of the fovix)
=x2" for n=2 (it is then— o limit of this form). Any clas-
sical system of this type will develop nonlinear resonances at F!G- 4. Strobe plots of the classical phase space for the driven
low energies when it is driven by a periodic force. Thesesauare well. Erlmary resonances overlap f?md. form a bounded region
resonances can overlap and create a region of chaos thatgkchaos as is increased. The line &=0 indicates the presence
bounded from abovf21,27. The quantum versions of these ©' & hard wall ¢=0<x=-1).
systems also have features corresponding to classical nonlin- » ) )
ear resonance®3,24. These structures have important ef- Where all quantities are now dimensionless. _
fects, similar to those that were seen in the double resonance NOte thate andw, are not independent parameters since

model, on the radiation spectra of these systems. the transformation o, €) — (wo\/c,ec) produces the same
dynamics(with a rescaling of the energy urd). Because of

this scaling law we can choose an arbitrasy, study the
o ) ) dynamics as a function of, and effectively analyze the dy-
The Hamiltonian for the driven square well is namics for any set of d,e). In this paper we choose
wy=80. Figure 4 shows strobe plots of this systeim

A. Classical system

"2

A= p_+~5( cosz)o~t, |;<|$a, (3.1) action-angle variable.sfor e=.50, 320, a_nd 160_0. .
2m We can rewrite this Hamiltonian using action-angle vari-
- _ ables. We find
wherem is the massp is the momentum, anx is the posi-
tion of the particle. The width of the square well ia.2The 232 8¢ X 1
driving field has amplitude and frequencyo,, witht as the H=—4——— Z —cogNf—wot). (3.3
time coordinate. This Hamiltonian can be made dimension- T odd

less using the scaling transformation introduced[21],
where H=Hc, X=xa, p=py2mc, e=e€(c/a), t The action and angle variables are definedby2|p|/ and
=ta\2m/c, and wy= wo(1/a)\c/2m. This transformation 0=+ m(x+1)/2. This form of the Hamiltonian indicates
introduces an arbitrary unit of energy The scaled Hamil- that primary resonances for the driven system occur at values
tonian (in units ofc) is of the action variable given by{'=2w,/mm?. The m=1
resonance is apparent in all of the strobe plots in Fig. 4. The
H=p2+ ex coswot, |x|<1, (3.2 m=3 resonance is visible only in the=50 plot. Fore
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=320 and 1600 all of the primary resonances have over- T ' T T ' ' '
lapped and all but then=1 resonance have been destroyed.
Note that them=1 resonance cannot overlap with any
higher energy primary resonances because there are no pri-
mary resonances with a higher energy. Thus the region
above them=1 resonance will remain regular for all field
strengths. This leads to “bounded chaos” in the system. We
will show that this structure has a profound effect on the
dynamics of the corresponding quantum system.

log,o [x(w)|? (arb. units)

B. Quantum system

The Schrdinger equation for a driven particle in an infi-
nite square well is given by

d

() =[Hot+ eé(t)x cog QD) ][¢(1)), (3.4

Iﬁﬁ_

logyo |x(w)|* (arb. units)

whereH, is the Hamiltonian for the undriven systefie.,
Ho=p?, |x|=<1) and&(t) is the turn-on functiorisee Eq. | | \ | \ | |
(2.4)]. For all square well calculations we ue=1.

Again we use the eigenstatestef to analyze the Schro
dinger equation for this system. The boundary conditions for
the eigenstates oH, are (—1t)=y(1t)=0, where
w(x,t)=(x|#(t)). The energy eigenvalues bf, are

log,o [x(w)f? (arb. units)

m°h°n?
E,= , n=12 ..., (3.5
4
and the corresponding wave functions are given by 0 oo j?% B Hm
~[an(x—1) FIG. 5. Spectra for the driven square well @ 320. These
() =(X|Ep)=sin| - 2 : B8 three spectra are typical for initial conditions starting in the three

regions of classical phase spa¢a: regular,(b) resonance, an(t)

where |E,,) represents the eigenstate whose eigenvalue ighaotic. The cutoffs fotb) and(c) are determined by the range of
E,. The dipole matrix elements for these eigenstates are ©nergies a classical particle in each region can sample.

0, m-+n(mod 2=0

Xnm= 16mn (3.7

.1 ,
Xji=— ﬁ(Ej —E)*X;i
— . m+n(mod2=1,

7T2(m2_n2)2

1
_ _ + 5 eé(t)cog wot) X (2B~ Ej— E) X
where (mod 2 stands for “modulo 2.” This form is very h k
convenient for numerical calculations. (3.10
Writing the wave function in the energy badig/(t)) '
=3,ci(t)|E;)], one can convert the Schtimger equation

. ) ) , X is the “acceleration matrix element.”
into a system of ordinary differential equations for tés:

We use a basis of the first 80 eigenstatedHgf which
dei (1) e i extends well into the regular region for all of the field
i i . . |
= o)+ —e&(cod o) S xci(1). strengths we will consider. All spectra were calculated using
dt il g eElleoswo ); it 128 cycles of the field after the end of the initial turn-on
(3.8)  period. Examples of spectra are shown in Fig. 5. Note that
since parity is a good quantum number for this system there

This system can be numerically solved for any initial condi-is no radiation at even harmonics of the driving field.
tion. The radiation spectrum is simply the Fourier transform

of the acceleration, and the acceleration time series is given
by IV. HARMONIC GENERATION IN THE SQUARE WELL

We study harmonic generation in the quantum system for

DX =S c*(H)xici(t), 39 twol figld strengths. At each field strength we calculate the

(OX[9O) .EJ 7 (Ox;Ci(t) 39 radiation spectrum, and Floquet composition at the end of

the turn-on, for several initial states. In each case the spec-

where trum is essentially determined by which Floquet states are
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50 - ) For initial staten= 16 the radiation spectruffrig. 5(b)] is
40 e quite different. There does appear to be a plateau in the spec-
30 m trum running out to about the 11th harmonic. However, the
20 harmonic peaks do not show up clearly. There are a number
10 of additional peakgshifted harmonicsthat make the spec-
-0 trum very messy. The Floquet analysis reveals that about 13
o (e) (@) Floquet states are excited above the level of 0.1%. This leads
20 to shifted harmonics because the system can radiate at fre-
20 quenciesnwy+ (Q,—Qp), where(),, and (), are quasien-
o @@ ergies associated with the excited Floquet stéfgmpendix
B). If n Floquet states are excited there will be—(1)!
50 (e) possible values of @,—€g). For 13 states this means
40 nearly 10 possible shifted peaks for each harmonic. It
30 should be noted, however, that 80% of the probability lies in
20 three Floquet states. The Husimi distributions for these Flo-
10 ‘ quet states are shown in FiggbB-6(d). These three states
% W are all localized within the primary resonance.
I S R i Now for initial staten=3 we see from Fig. &) that there
is strong harmonic generation. The cutoff in the spectrum
FIG. 6. Husimi plots of Floquet states for the driven square We”appears to be at about the 19th harmonic. There are a few
at e=320. Each state can be associated with a particular region afpifted peaks, but not so many as to obscure the harmonic
the classical phase spaca} regular,(b)—(d) resonance, an@) and  hoaks. The Floquet analysis reveals that there are two Flo-
(f) chaotic. quet states that are significantly excited. We see that the
Husimi distributions of these Floquet states, shown in Figs.
(e) and &f), are concentrated in the chaotic region of the
classical phase space. One of these is localized hedr
(the bottom of the we)l while the other is localized near the
unstable fixed point aj~15. This combination gives the

o

excited. For a general discussion on the radiation spectru
of a superposition of Floquet states see Appendix B.

A. Strong field guantum system access to energies spanning the chaotic re-
. ' . gion.
The classical phase space for field strengtB820 is cha- For the combination of Floquet states arising fram 3,

otic for actions less than about 25. However, in the middle ofyne would expect transitions to occur whose energy differ-

this chaotic sea there is a prominent resonance from 12 t0 2gce is equal to the energy range of the chaotic region
in action and about-1 to 1 in angle. Abovd =25 the phase [AE=72(252— 0%)/4=1542] or less(see Appendix B So
space is regular. . the cutoff in the harmonic generation should occur at
We compute the radiation spectrum of the quantum Sysp g/, —1542/80~ 19, which is exactly what we see in Fig.
tem for three different initial conditions=3, n=16, and  5c). For the resonance Floquet states arising frori6 one
n=35. This allows us to study the quantum behavior foryyoid expect the cutoff to be given by the energy range of
states that sit in the chaotic, resonance, and regular regions g§fe resonance divided byo. We find AE, = m2(22

the classical phase space. For this field strength we use 212%)/4=839 and AE,/Q=839/80~10.5 which again
12-cycle turn-on. The radiation spectrum for each initial con-fits the spectrum in Figr_e(sﬁ)_

dition is shown in Fig. 5.

For initial staten=35 we see that there is no high har-
monic generation. The radiation spectrum is typical of what
we might find using perturbation theory at weak field At a field strength ok= 1600 the classical phase space is
strengths. There is no significant harmonic radiation. Afterchaotic belowJ=40, as seen in Fig.(d). There is a small
computing the Floquet eigenstates for this field strength weéesonance still present ned# 22, as well as some tiny sec-
find that only one Floquet state was excited for this initialondary resonances, but all of these structures are small com-
condition. The Husimi distribution of that Floguet state is pared to# in the quantum system. We cannot expect these
shown in Fig. 6a). (Note that this and all Husimi distribu- structures to have an impact on the quantum dynamics of the
tions for this system should go to zero @=0 since this system. Abovel=40 the phase space is regular.
corresponds tx=—1. Because of the smoothing involved  We study this field strength using initial conditioms
in creating the Husimi distribution there appears to be non=3 andn=22. We omit the results fan>40 because they
zero probability a#=0 even though thevave functiorgoes  are identical to the regular results fer 320 [see Figs. &)
to zero there.lt is clear that the Husimi distribution closely and a]. The turn-on for this field strength is 60 cycles,
follows the invariant tori that appear in the regular part of thewhich gives the same adiabaticity as the 12-cycle turn-on for
classical phase space. We will call such a state a “regular’e=320.

Floquet state. These states are typically excited for initial Starting off inn=3, we find the spectrum shown in Fig.
conditions that begin in the regular part of the classical phas#@(a). At low frequencies the radiation spectrum resembles
space. Since these states produce no HHG, this region wiflwhite noise.” This is because of the large number of
be of little interest to us here. shifted peaks that wash out the harmonics. The system

B. Very strong field
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' ' T T T T T T At n=22 we are close to the energy of the small reso-
nance. However, we see that the spectrum for this initial
condition[Fig. 7(b)] looks very similar to the one fan=3.
Again we find that there are many Floquet states populated.
Husimi plots for two of these are shown in FiggcBand

8(d). It is clear that these states amet concentrated inside
the small resonance. This is because the resonance is small
compared to the size df in our calculations. The quantum
system effectively ignores the presence of the resonance. In-
stead, the system populates delocalized chaotic Floquet
states, as fon=3. Again, the cutoff matches the energy
range of the chaotic region.

logyo [x(w)|* (arb. units)

C. General properties

From the above analysis we derive some basic properties
of the radiation spectrum for this system. First, states that
start out in a regular region of the classical phase space will
. remain localized in this region. They will typically only ex-

' w/wo' cite a single Floquet state whose Husimi distribution is con-
centrated around a classical invariant torus. Such a state will

FIG. 7. Spectra for the driven square welleat 1600. Although  produce no HHG.

(b) starts off in the resonance region, the resonance at this field A state initially inside a largdrelative to#) resonance

strength is too small to influence the quantum dynamics. The CUt\'NiII typically excite numerous Floquet states. This large
offs for both spectra are given by the energy range of the chaotic

region. number of Floquet states leads to a noisy spectrum with
many shifted peaks. However, most of the probability will be
passes through many avoided crossifgge Sec. Yduring  in Floguet states that are localized in or near the resonance
the turn-on, resulting in the excitation of many Floquet region. This leads to a cutoff in the spectrum that is deter-
states. There appears to be a cutoff at about the 50th hamined by the width(in energy of the resonance.
monic. We show the Husimi distributions of two of these  An initial condition in the chaotic region will excite cha-
Floquet states in Figs.(& and 8b). While the state shown otic Floquet states. At lower field strengths these chaotic
in Fig. 8(a) appears to be concentrated near the location oftates will be localized near a particular unstable periodic
the small resonancéalthough certainly not inside)itthe  orbit of the classical system. Only a few of these localized
state in Fig. 8) is spread throughout the chaotic region. states will be excited, which leads to a clean harmonic spec-
This is somewhat different from the localized “chaotic” Flo- trum. At very high field strengths the chaotic Floguet states
quet states a¢=320. However, at this higher field strength it \yill have Husimi distributions that fill the chaotic region.
is typical for the chaotic Floquet states to fill the chaotiCThese delocalized states have become associated with a large
region. This delocalization occurs for Floquet states thaket of periodic orbits of the classical system. This occurs
have passed through many avoided crossisge Sec. Y. hen the system has passed through many avoided crossings
Again we see that the size of the chaotic region determlneauring the turn-on. These avoided crossings lead to the ex-
the cutoff as AE=n?(40°—0)/4=3948 and AE/w, oo ' ,

. . . citation of a large number of Floquet states and an incoherent
=30945/86~49, which agree well with what we see in the radiation spectrum. In either case the cutoff is given by the
spectrum. : .

energy range of the chaos, which can be quite large.

In all of these cases the cutoff in the HHG is determined
by the range of energies that the classical particle can sample
during its trajectory. This result is in agreement witl®]. It
is also similar to other cutoff lawdlike those invoking the
ponderomotive potential or the ac Stark shifiecause the
cutoff is just given by the maximum energy that the classical
particle can gain from the field. For a state that is initially in
a chaotic region we can predict the cutoff by examining a
strobe plot of the classical dynamics. Table | shows the cut-
offs seen in the spectra and the energy range of the chaos
seen in the strobe plots. The observed cutoffs follow the
strobe plot predictions very closely.

Note that the table includes data from field strengths that
are not discussed elsewhere in this paper. The uncertainties

FIG. 8. Husimi plots for driven square well Floquet stateg at in the cutoff values read from the spectra are worse for high
=1600. At this high field strength the Floguet states broaden to filfield strengths because these spectra tend to be noisy and
the region of chaos. difficult to read.

log o [ (@)|? (arb. units)
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TABLE I. Observed harmonic cutoffs and predictions based onbut do not cross each othdao be seen. However, after this
classical strobe plots for several field strengghdJncertainties in  point the avoided crossings arise quickly. At even higher
the observed cutoffs are large for very strong fields because theggs|d strengths almost every curve undergoes a rapid succes-
spectra have many shifted peaks, making them difficult to read. gjoy of many avoided crossings. The proliferation of avoided
crossings is associated with the spread of chaos in the clas-

€ Observed Strobe sical system. One of the first avoided crossings occurs at a
50 9+2 ~11 field strength of e=~100. This matches the critical field
150 15+-2 ~15 strength for overlap of the two highest energy primary reso-
320 19+2 ~19 nances in this systef21,22. This avoided crossing involves

960 35+ 2 ~37 states connected =6 andn= 10 (labeledQ g and ) in
1600 49- 4 ~49 Fig. 9. We note that these pairs are symmetric aboai8
2560 734 ~74 becauselJ=8 is precisely where the classical resonances

overlap at the critical field strength. This indicates a strong
connection between avoided crossings in the Floguet spec-
V. AVOIDED CROSSINGS trum and overlap of nonlinear resonances in the classical
phase space.

It seems apparent from the above analysis that if one Figure 9 shows the quasienergies of the lowest 40 states
wishes to get HHG, one must excite chaotic Floquet statesn our basis. Using a finite basis to calculate quasienergies
To get sharp peaks at the harmonice., few shifted har- ajways introduces numerical errg26], but for the field
monics, one should excite as few Floquet states as possiblgtrengths shown this error is extremely small. At higher field
[19,20. Ideally one would like to excite a single delocalized strengths one would need to use a larger basis to avoid nu-
Floquet state, but it is nearly impossible to excite only onemerical error. Essentially one can avoid numerical error as
such state. Another alternative is to excite a superposition Qf)ng as the basis extends well into the regular region of the
two states that sit at high and low energies, respectivelyphase space. Since our calculations use statesnip 8 we
Avoided crossings in the Floquet spectrum provide the opwill not experience numerical error until the chaotic region
portunity for transitions between Floquet staf@b] and  comes nearJ=80, which is not the case for any field
hence a method for engineering a particular combination o&trengths we consider here. Note that there are also several
Floquet states. places in Fig. 9 where quasienergy curves actually cross each

In Fig. 9 we plot the quasienergies of our system for fieldother. These “apparent crossings” arise when the quasiener-
strengths of 0—400. Up to field strengths of abeat200  gjes of two states are in resonance, but transitions between
there are few avoided crossin@shere two curves approach, the states are forbiddd@5].

One interesting thing to note is that several of the curves
(i.e.,Q46, Qq4, ...)in Fig. 9 resemble curves of the char-
acteristic values of Mathieu's equatig@7], which is the
Schralinger equation for the quantum pendulum. Husimi
plots of states with these quasienergies are localized inside
the pendulumlike nonlinear resonarie@milar to Fig. &b)].

At very high field strengths, where the classical resonance

has been destroyed, the quasienergy curves have gone
through many avoided crossings and no longer resemble the
eigencurves of the Mathieu equation.

Avoided level crossings provide one of the two mecha-
nisms available for population transfer between Floquet
states. The other mechanism is a nonadiabatic turn-on of the
driving field. If the field is turned on rapidly, transitions be-
tween Floquet states will be allowed because the Floquet
states at one field strength will not be Floquet states at an-
other field strength. A rapidly varying field strength leads to
rapid changes in the structure of the Floquet states and thus
to transitions between Floquet states. However, if the field is
turned on adiabatically the system will remain in the same
(continuously connectedFloquet state until it reaches an
avoided crossing. We will confine our investigation to popu-

\ | lation transfer that occurs at the avoided crossing between
0 50 100 150 200 250 300 350 400 Qg and (), at e~100.
€ To study this avoided crossing we start with the system in

FIG. 9. Plot of quasienergies as a function of field strength for =6 and investigate the behavior of the system for field
the driven square well. Curves associated with resonance statéérengths below and above the avoided crossingeAB5
(i.e., Q.5 and Q,,) resemble eigencurves of the Mathieu equationthe state is composed of 98.6%¢) and 1.4%|( ;) at the
[27]. The avoided crossing discussed in the text is betiegand  end of its turn-on. Ate=125 we are mostly through the
Q.9 at e~100. avoided crossing and the state is composed of 728%)
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' ' f ' ' tions of the two Floquet states have “flowed” through each
. other. Since these Floquet states are associated with unstable
£ periodic orbits of the classical system, it is clear that avoided
; crossings occur when these periodic orbits move past each
& other in phase space. Since periodic orbits can cross only
% after the destruction of Kolmogorov-Arnold-Moser tori in
= classical phase space when nonlinear resonances overlap, we
=2 see that there is a close connection between chaos and
= avoided crossings.
Avoided crossings increase HHG in two ways. The first is
i i by creating a superposition of Floquet states that occupy dif-
z ! (b) =125 ferent regions of phase space. This superposition will typi-
‘5{ 2 ! cally be spread over a wide range of energies, which leads to
2 0 '1 T the plateau structure that is observed in the radiation spectra.
; —2 i ‘ I 7 The second way avoided crossings contribute to HHG is by
% —4 il AT e - creating delocalized Floquet states. After a state passes
:% —6F il ‘ . through many avoided crossings it will lose the close asso-
< gtk ‘ ciation it had with a single periodic orbit and become asso-
! . ! : | ciated with a large set of periodic orbits. These periodic or-
0 5 10 15 20 25 30 bits will typically be spread throughout the chaotic region,

w/fwo

which leads to delocalization of the Floquet state.
FIG. 10. Spectra for the driven square well with initial condition
n=6. The avoided crossing betweé€ly and (), occurs between
these two field strengths. Note the increase in HHG after the system
has passed through the avoided crossing. We have studied the radiation spectrum of two strongly
driven multilevel systems whose classical counterparts ex-
and 27.5%4Q). Spectra shown in Fig. 10 show an increasehibit bounded chaos. The quantum systems show the highest
in HHG as the system traverses the avoided crossing. Thidarmonic generation when the corresponding classical sys-
indicates that population transfer “spreads” the wave func-tems become chaotic. This can be due to broadening of in-
tion over a wider range of energies. dividual Floquet states across classically chaotic regions or
Since this avoided crossing is so broad we can easiljhe population of multiple Floquet states with support on
monitor the change in the Husimi distributions of the Floquetchaotic regions. We observe the characteristic HHG plateau
states. Figure 11 shows the Husimi distributions|fog) and  structure in either case. The harmonic cutoff is determined
|Q,0) at various field strengths. Ad=65 we see thal) ) by the energy range spanned by the populated Floquet states.
sits at higher energy thdfis). At e=100 both states are in In analogy with the harmonic cutoffs of the two-level model
approximate|y the same region of phase Spaceeﬁﬂ_ZS and tunnel ionization process, the cutoff is determined by the

|Q6) sits at higher energy thalf),o). The Husimi distribu- kinetic energy attainable from the driving field. We expect
this relation to be applicable to all multilevel models exhib-

iting bounded chaos. Our results may also be applicable in
b) e = atomic systems where bound-bound transitions account for
most or all of the radiation. However, it should be pointed

out that in typical atomic systems chaos is not bounded and
leads to ionization.

Chaos is also connected to the onset of the avoided level
crossings in the quasienergy spectrum. One method that can
(d) e = 100 be used to excite Floquet states other than those adiabatically
connected to the initial state is to run the system through an

avoided crossing. Population transfer at avoided crossings
O O can lead to quite significant changes in the Floquet compo-
& a sition of the wave function. This possibility seems to hold

the most promise for engineering a superposition of Floquet
states that will radiate high-order harmonics of the driving

W field.
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T T T T )
5
FIG. 12. Husimi plot showing the two states in the superposi-
tion. |Q3,) is primarily composed of the=32 energy eigenstate,
while |Qsg) is composed mainly ofi=50. z
APPENDIX A: THE HUSIMI DISTRIBUTION =
The Husimi distribution is a quasiprobability distribution %
function allowing direct comparison with classical phase =
space distribution functions[28,29. The quantum- %%
mechanical phase space is constructed by adopting the co- ~
herent state basis. A coherent state is a minimum uncertainty | | | : I
wave packet centered at a poiny(po) in the phase space. _ 6 Lo Lo 4
In the position and momentum representation they are given £ 4 (c) 75192} + Z5/0s0) |
as[30,31] 5 2
= 0
1\ 2
3
<X|Xoapo>:(T) =
g T 2
'_gf‘,‘
(X=X )2 i (X—Xo) ! 1 1 ! 1
xXexp — 0 Po 0 (A1) 0 10 20 30 A0 50 60
20’2 h w/wy
and
FIG. 13. Spectra fofa) and(b) individual Floquet states and)
5\ 1/4 a superposition of two states. The location of the cluster of peaks in
(pIXo,Po)=| — (c) is determined by the separation in energy of the Husimi distri-
' wh2 butions in Fig. 12.

(PO |X] (1)) = a2 Q (1) X[ Q4 (1))

p( o?(p—po)? ixO(p—po))
X ex — — y
242 fi

(A2) +]agX(Q(0)X| Q1))

whereo is a squeezing parameter that determines the width +apage! e 0O (1)[x| (1))
of the Gaussian wave packet in each dimension. The Husimi
distribution functionW(xq,pg) for an arbitrary wave func-
tion is just|{ #/|xq,Po)|?, which is the probability that a par-
ticle lies within an ared centered atxg,pg)- (B2)

+afa,e' P8 2 (Q(1)]x|Q4(1)).

APPENDIX B: RADIATION SPECTRUM FOR

The first two terms correspond to the dipole value if the
A SUPERPOSITION OF FLOQUET STATES

system was in a single Floquet sta®,(t)) or [Q4(t)). A

In this appendix we will examine the radiation spectrumSingle Floquet state radiates only at the harmonics of the
of a superposition of two Floguet states that have support oflving field. Since these terms correspond to transitions
disjoint sets of unperturbed energy eigenstates. Husimi plo%"th'n a single Floguet state, the harmonic production will

of these states are shown in Fig. 12. We will write the su¢ detérmined by the range of unperturbed energy eigen-
states over which that Floquet state has support. If the Flo-

quet state is spread over a wide range of energies, then these
terms can contribute HHG. If the Floquet state is confined to
a narrow band of energies there will be no HHG. Figure 12
where|a,|?+|ag/*=1 and|Q(t))=|Q(t+T)). shows two Floquet states that lie in the regular region of the
The time-dependent dipole expectation value for this suphase space for the driven square welkat50. Radiation
perposition is spectra for each of these states are shown in Figs) 48d

perposition as

lp(t))=a,e %l Q (1) +age 2 Q41)), (BD)
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13(b). It is clear that these states do not generate high haisupport on then=32 energy eigenstate and the other Flogquet
monics, as predicted. state is concentrated near50. We expect the superposi-

The last two terms in EqB2) are cross terms that corre- tion to radiate at frequencies corresponding to the difference

spond to transitions between the two Floguet states. TransiD these energies. Fas,=80 this is near the 45th harmonic,

tions between Floguet states give rise to radiation at frequenfich iS exactly where the cluster of peaks in Fig(d3
. (0 —0.) If the two El t states h ; appears. The width of this cluster is determined by the range
ciesnwo* (2, (). € two Floquet states nave support energies over which the two Floquet states have support.

on widely separated sets of energy eig_enstates, then theggyse inspection of the peaks in Fig.(&Bshows that they
terms can lead to HHGat shifted harmonigs An example  re all shifted by 0.477 from the odd harmonics. This agrees
of this is shown in Fig. 1&), which shows the radiation with our expectations since the difference in the quasiener-
spectrum for a superposition of the two states shown in Figgies of the two Floquet state@livided by wg) is (Q3,

12. Note that one of these Floquet states has most of its )5y)/80=(46.712-8.526)/86=0.477.
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