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High harmonic generation in systems with bounded chaos

W. Chism, T. Timberlake, and L. E. Reichl
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~Received 22 December 1997!

In this paper we study the radiation spectrum generated by the quantum dynamics of a double resonance
model and a driven square well system. We use Floquet theory to analyze the radiation generated by these
systems. We present the results of numerical simulations that indicate a connection between high harmonic
generation and underlying classical chaos in these models. Our results provide a means of predicting the
radiative characteristics of multilevel quantum systems subject to a strong periodic driving force.
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PACS number~s!: 05.45.1b, 42.50.Hz, 42.65.Ky
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I. INTRODUCTION

High harmonic generation~HHG! by atoms subject to in-
tense laser pulses is a major topic in nonlinear atomic ph
ics. The characteristic radiation spectrum of strongly driv
atomic systems consists of a rapid decrease in radiated in
sity over the first few laser harmonics followed by a plate
of approximately equal intensity peaks out to an abrupt c
off. For atoms subject to low frequency driving fieldsv0

<I p , wherev0 is the driving frequency andI p is the ion-
ization potential, electron ionization and subsequent rec
bination account for the cutoff location. If the driving fre
quency is lower than the tunneling frequency, given
F/A2I p, whereF is the field strength, the electron will tun
nel through the quasistatic barrier@1#. It may gain energy
from the laser field and recombine, emitting high frequen
radiation. The energy gained by the electron is determi
by the phase of the driving field at the instant the elect
tunnels. The maximum energy that can be gained by an e
tron that returns to the core is 3.17Up , whereUp is the cycle
averaged electron energy in the laser field:F2/4v0

2 @2–4#.
Thus a two-step ionization and recombination process
counts for the experimentally observed cutoff law.

However, high harmonic generation has proved genera
all known strongly driven quantum systems, including tho
that allow no ionization. Several examples are the driv
two-level model@5#, the driven triangular well@6#, and the
driven anharmonic oscillator@7#. The location of the cutoff
in these systems is clearly not due to ionization and rec
bination. Recently, Gautheyet al. @8# have shown the cutof
in the two-level model to be given byvmax.vab/212V,
where V is the Rabi frequency 2dF/\ and \vab[Ea

2Eb . As usual,d is the off-diagonal dipole matrix elemen
andEa andEb are the energy eigenvalues. The 2V term can
be viewed as arising from the dynamical Stark shift of eith
state. Thus this term represents the kinetic energy attain
from the driving field. This sets the gain curve~the frequency
range over which the system may respond! analogous to the
3.17Up term in the tunneling regime, although the cuto
dependence on field strength is quite different.

In this paper, we consider mechanisms for HHG in m
tilevel quantum systems driven by time periodic semiclas
PRE 581063-651X/98/58~2!/1713~11!/$15.00
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cal force fields. The classical counterpart of such systems
exhibit a transition to chaos@9#. It is well known that chaos
in a classical system will allow a particle to diffuse throug
out the chaotic region, sampling a range of energies.
transforming the classical Hamiltonian of a particle subj
to a strong driving force to action-angle variables, the Ham
tonian, in general, will take the form

H5E0~J!1F (
m52`

`

xm~J!cos~mu2vt !, ~1.1!

whereuuu<2p andxm(J)5p21*0
2px(J,u)cos(mu)du. Thus

the driving field induces an infinite series of nonlinear pe
dulumlike resonances with location given by]E0 /]J
'v/m. An isolated resonance will have classical wid
DJm}F1/2. For sufficiently strong fields these resonanc
will overlap and lead to chaos in the phase space. The p
ence of chaos in a classical model driven by a strong perio
force indicates the corresponding quantum system m
sample a wider range of energies, gain kinetic energy fr
the driving field, and radiate harmonics of the driving fr
quency. Averbukh and Moiseyev@10# found that the har-
monic cutoff in the double resonance model is given by
extent in energy of the underlying classical chaos.

In this paper we use Floquet analysis@9,11,12# to examine
the relationship between chaos in classical systems and H
in their quantum counterpart. We will look first at the cla
sical and quantum versions of the paradigm system for
generation of chaos: the double resonance model. This m
is important for theoretical studies of renormalization in cla
sical and quantum dynamics@9,13#. Then we carry out a
study of the classical and quantum dynamics of the driv
square well, which may be more easily realized in laborat
experiments@14#. Both these systems contain regions of co
fined chaos.

II. DOUBLE RESONANCE MODEL

In this section, we examine the classical and quant
dynamics of the simplest Hamiltonian system that exhibit
transition to chaos, the double resonance model@9,13,15,16#.
We use Floquet theory to make the connection betw
HHG and classical structures, similar to the analysis of Av
bukh and Moiseyev@10#. However, we consider the radiatio
1713 © 1998 The American Physical Society
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1714 PRE 58W. CHISM, T. TIMBERLAKE, AND L. E. REICHL
produced by superpositions of Floquet states excited du
the turn-on of the periodic interaction and the effect of cha
on those superpositions.

A. Classical model

The double resonance Hamiltonian consists of a ro
driven by a pair of traveling sinusoidal potential waves

H5
J2

2I
1V1cos~M1u2v0t !1V2cos~M2u2v0t !,

~2.1!

where J is the angular momentum of the rotor,u
(uuu<2p) is its angle,I is the rotor’s moment of inertia, the
Vi are the wave amplitudes, and the wave speeds aru̇
5v0 /Mi . We rescale this Hamiltonian to dimensionle
units by takingJ→J\, t→t\/I , Vi→Vi\

2/I , v0→v0I /\,
andH→H\2/I . This yields

H5
J2

2
1V1cos~M1u2v0t !1V2cos~M2u2v0t !.

~2.2!

This system models the dynamics in the vicinity of a pair
nonlinear resonances, as in the action-angle Hamiltonian
an atom subject to a strong periodic driving field. It has t
primary resonances that may interact, producing higher-o
nonlinear resonances and chaos in the phase space. Th
mary resonances lie atJi5v0 /Mi with i 51,2.

Figure 1 shows the phase space for this system u
M151, M253, v059.7, V154.5, andV25V1/4. The reso-
nances are located atJ1'9.7 andJ2'3.23. From the strobe
plot we see that there are three distinct phase space struc
for this field strength. There are regions above and below
resonances corresponding to integrable or ‘‘regular’’ moti
The primary nonlinear resonances have begun to overlap
create a network of higher-order resonances. This produc
regular region within the large primary resonance, s
rounded by a chaotic strip in the phase space. A particle
starts out in the chaotic region may sample energies throu
out this region, while a particle trapped in the remaini

FIG. 1. Strobe plot showing the classical phase space of
double resonance model with parametersV154.5, V25V1/4, M1

51, M253, andv059.7. TheM1 resonance, located atJ1'9.7,
has overlapped with theM2 resonance. TheM2 resonance, initially
located at J2'v0 /M253.23, has been almost completely d
stroyed.
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larger primary has a maximal kinetic energy range de
mined by the width of the resonance. The kinetic ene
accessible to a classical particle in the chaotic region
Jmax

2 /22Jmin
2 /2, whereJmax andJmin are the upper and lowe

bounds in action of the chaotic strip. Dividing this by th
driving frequency gives the maximum expected harmo
frequency component of the particle motion. From the stro
plot, we see this is near the tenth harmonic. For the part
trapped inside theM1 resonance, the classically predicte
cutoff is near the fifth harmonic.

B. Quantum model

We now study the radiation generated by the quant
version of the paradigm system. TakingJ→ Ĵ52 i (]/]u),
the Schro¨dinger equation becomes

i
]C~u,t !

]t
52

1

2

]2C~u,t !

]u2
1j~ t !@V1cos~M1u2v0t !

1V2cos~M2u2v0t !#C~u,t !, ~2.3!

wherej(t) is the turn-on function.
For all of the calculations in this paper we will use

turn-on function given by

j~ t !5H sin2S v0t

4n D , t,
2pn

v0

1, t.
2pn

v0
,

~2.4!

where n is the number of cycles in the turn-on. After th
turn-on, the Hamiltonian is invariant under the discrete tim
translation symmetryt→t62p/v0. This allows us to ana-
lyze the system in terms of eigenstates of the unitary o
period time evolution operator~Floquet states! @11,12#. In
order to obtain the Floquet states, we represent the full tim
periodic Hamiltonian in the rotor basis. Then we integra
the Schro¨dinger equationN times (N is the number of basis
states! from t50 to t5T with initial conditions uC(t50)&
5un& (1<n<N), whereun& is the nth unperturbed energy
eigenstate. Each integration gives one column of the ma
representation of the unitary time evolution operator. Eig
vectors of this operator are the Floquet statesuVa&, which
satisfy

Û~T! uVa&5eiVaT uVa&, ~2.5!

whereVa is the Floquet eigenvalue~or quasienergy!. Solv-
ing the eigenvalue problem, we obtain representations oN
Floquet states@9#. These are steady states of the atom p
driving field, in analogy with steady states of the tim
independent problem. After the turn-on, we project the wa
function onto the Floquet basis to determine which states
populated. We then use the Husimi distribution~see Appen-
dix A! on quantum-mechanical phase space to relate th
states to classical structures.

Expanding the Schro¨dinger equation in free rotor eigen
states^uun&5(1/A2p)einu, we obtain an ordinary differen
tial equation for the time-dependent coefficients:

e
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i ċn5
n2

2
cn1

V1

2
~e2 iv0tcn2M1

1eiv0tcn1M1
!

1
V2

2
~e2 iv0tcn2M2

1eiv0tcn1M2
!. ~2.6!

The acceleration time series is given by

^C~ t !u ü̂uC~ t !&5(
kl

Ck* ~ t !C l~ t !ükl , ~2.7!

where

ükl5(
i j

@2^kuĤu i &^ i uûu j &^ j uĤu l &2^kuĤu i &^ i uĤu j &^ j uûu l &

2^kuûu i &^ i uĤu j &^ j uĤu l &# ~2.8!

and

ukl[^kuuu l &5H p, k5 l

i

k2 l
, kÞ l .

~2.9!

We show the radiation spectrum for this system obtain
from integrating the Schro¨dinger equation with paramete
values identical to the classical case. Figure 2 shows the
power spectrum forv059.7 and various initial atomic state
These show the radiative characteristics for the atomic
tem prepared in each of the three distinct classical region
each case, we turn on the interaction with the sin2 ramping
over 16 cycles, followed by constant amplitude for 32 cycl
The acceleration time series is calculated from the cons
amplitude integration. The power spectrum is estimated
taking the modulus squared of the Fourier transformx(v) of
the acceleration time series. Note that we do not expect e
harmonics to be forbidden, as in realistic atomic syste
since the Hamiltonian is not invariant underu→2u.

Figure 2~a! shows the spectrum typical of a quantum sy
tem excited into a state or set of states that has regular
derlying classical dynamics. There is no significant harmo
generation. The individual Floquet states, which are the
tionary states of the atom plus laser system, have sup
localized to a narrow band of atomic states. Thus a sin
excited Floquet state will possess a narrow gain curve~see
Appendix B!.

Figure 2~b! shows a typical spectrum for a quantum sy
tem with underlying classical chaos: Radiation is produc
with the gain curve approximately given by the width
kinetic energy of the chaotic strip. The spectrum show
cutoff near the tenth harmonic, in agreement with the cla
cal prediction. Projection of the initial wave function~after
turn-on! onto the Floquet basis shows several states w
reasonable population. This is not unexpected since the s
do not evolve perfectly adiabatically for the finite turn-o
The quasienergies of the initially populated states determ
the detailed structure of the radiation spectrum without
fecting the location of the cutoff. This is because Floqu
states may become ‘‘broadened’’ across the classically
regular region, gaining support on atomic states through
the chaotic region@17,18#. Thus a single Floquet state, wit
d
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support across the chaotic region, generates only pure
monics of the driving field~see Appendix B!, with the cutoff
given by the width in energy of the chaotic strip. The pre
ence of shifted harmonics is an indication that multip
broadened Floquet states are contributing@19,20#. Figures
3~a!–3~c! show the Floquet states involved in production
the radiation seen in Fig. 2~b!.

Figure 2~c! shows the radiation spectrum of a typic
atomic system trapped in a single nonlinear resonance. It
many shifted harmonics~hyper-Raman lines! and a cutoff
given by the width in energy of the nonlinear resonance.
the M1 primary resonance, the classically predicted cutof
at about the fifth harmonic, which agrees well with the cut
in Fig. 2~c!. The many shifted peaks indicate the excitati
of many Floquet states associated with the resonance.
ures 3~d!–3~f! show the Husimi distributions for several o
these ‘‘resonance’’ states.

Our results describe the radiative characteristics of F
quet states associated with these three distinct region
classical phase space. The results we have seen for
double resonance model should be applicable to all stron
driven multilevel systems, where regular regions, nonlin

FIG. 2. Radiation spectrum for states initially localized to t
three distinct classical regions of the double resonance model.
each case, the rotor is placed in an initial staten and the interaction
is ramped on with a 16 cycle turn-on. The typical spectrum cor
sponding to ‘‘regular’’ regions is shown in~a! wheren520. The
typical spectrum for ‘‘chaotic’’ initial conditions is shown in~b!,
wheren53. The radiation produced by a superposition of ‘‘res
nance’’ states is shown in~c!, wheren58.
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resonances, and chaos coexist in phase space.

III. DRIVEN PARTICLE IN A SQUARE WELL POTENTIAL

The rest of the paper will be devoted to studying a parti
confined to an infinitely deep square well and driven by
time-periodic field. The infinite square well is representat
of a class of systems whose potential is of the formV(x)
5x2n for n>2 ~it is then→` limit of this form!. Any clas-
sical system of this type will develop nonlinear resonance
low energies when it is driven by a periodic force. The
resonances can overlap and create a region of chaos th
bounded from above@21,22#. The quantum versions of thes
systems also have features corresponding to classical no
ear resonances@23,24#. These structures have important e
fects, similar to those that were seen in the double resona
model, on the radiation spectra of these systems.

A. Classical system

The Hamiltonian for the driven square well is

H̃5
p̃2

2m
1 ẽ x̃ cos ṽ0 t̃ , ux̃u<a, ~3.1!

wherem is the mass,p̃ is the momentum, andx̃ is the posi-
tion of the particle. The width of the square well is 2a. The
driving field has amplitudeẽ and frequencyṽ0, with t̃ as the
time coordinate. This Hamiltonian can be made dimensi
less using the scaling transformation introduced in@21#,
where H̃5Hc, x̃5xa, p̃5pA2mc, ẽ5e(c/a), t̃

5taA2m/c, and ṽ05v0(1/a)Ac/2m. This transformation
introduces an arbitrary unit of energyc. The scaled Hamil-
tonian ~in units of c) is

H5p21ex cosv0t, uxu<1, ~3.2!

FIG. 3. Husimi distributions of Floquet states responsible
radiation shown in Figs. 2~b!–2~c!. In ~a!–~c!, we show the set of
Floquet states responsible for the harmonic generation show
Fig. 2~b!. In ~d!–~f! we show the ‘‘nonlinear resonance’’ Floque
states responsible for radiation shown in Fig. 2~c!.
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where all quantities are now dimensionless.
Note thate andv0 are not independent parameters sinc

the transformation (v0 ,e)→(v0Ac,ec) produces the same
dynamics~with a rescaling of the energy unitc). Because of
this scaling law we can choose an arbitraryv0, study the
dynamics as a function ofe, and effectively analyze the dy-
namics for any set of (v0 ,e). In this paper we choose
v0580. Figure 4 shows strobe plots of this system~in
action-angle variables! for e550, 320, and 1600.

We can rewrite this Hamiltonian using action-angle vari
ables. We find

H5
p2J2

4 2
8e

p2 (
n52`

n odd

`
1

n2
cos~nu2v0t !. ~3.3!

The action and angle variables are defined byJ52upu/p and
u56p(x11)/2. This form of the Hamiltonian indicates
that primary resonances for the driven system occur at valu
of the action variable given byJc

m52v0 /mp2. The m51
resonance is apparent in all of the strobe plots in Fig. 4. Th
m53 resonance is visible only in thee550 plot. For e

r

in

FIG. 4. Strobe plots of the classical phase space for the drive
square well. Primary resonances overlap and form a bounded reg
of chaos ase is increased. The line atu50 indicates the presence
of a hard wall (u50↔x521).
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5320 and 1600 all of the primary resonances have ov
lapped and all but them51 resonance have been destroye
Note that them51 resonance cannot overlap with an
higher energy primary resonances because there are no
mary resonances with a higher energy. Thus the reg
above them51 resonance will remain regular for all fiel
strengths. This leads to ‘‘bounded chaos’’ in the system.
will show that this structure has a profound effect on t
dynamics of the corresponding quantum system.

B. Quantum system

The Schro¨dinger equation for a driven particle in an infi
nite square well is given by

i\
]

]t
uc~ t !&5@H01ej~ t !x cos~Vt !#uc~ t !&, ~3.4!

whereH0 is the Hamiltonian for the undriven system~i.e.,
H05p2, uxu<1) andj(t) is the turn-on function@see Eq.
~2.4!#. For all square well calculations we use\51.

Again we use the eigenstates ofH0 to analyze the Schro¨-
dinger equation for this system. The boundary conditions
the eigenstates ofH0 are c(21,t)5c(1,t)50, where
c(x,t)5^xuc(t)&. The energy eigenvalues ofH0 are

En5
p2\2n2

4
, n51,2, . . . , ~3.5!

and the corresponding wave functions are given by

cn~x!5^xuEn&5sinS pn~x21!

2 D , ~3.6!

where uEn& represents the eigenstate whose eigenvalu
En . The dipole matrix elements for these eigenstates are

xnm5H 0, m1n~mod 2!50

16mn

p2~m22n2!2
, m1n~mod 2!51,

~3.7!

where ~mod 2! stands for ‘‘modulo 2.’’ This form is very
convenient for numerical calculations.

Writing the wave function in the energy basis@ uc(t)&
5( ici(t)uEi&], one can convert the Schro¨dinger equation
into a system of ordinary differential equations for theci ’s:

dci~ t !

dt
52

iEi

\
ci~ t !1

i

\
ej~ t !cos~v0t !(

j
xi j cj~ t !.

~3.8!

This system can be numerically solved for any initial con
tion. The radiation spectrum is simply the Fourier transfo
of the acceleration, and the acceleration time series is g
by

^c~ t !uẍuc~ t !&5(
i , j

cj* ~ t !ẍ j i ci~ t !, ~3.9!

where
r-
.

pri-
n

e

r

is

-

en

ẍ j i 52
1

\2
~Ej2Ei !

2xji

1
1

\2
ej~ t !cos~v0t !(

k
~2Ek2Ej2Ei !xjkxki

~3.10!

is the ‘‘acceleration matrix element.’’
We use a basis of the first 80 eigenstates ofH0, which

extends well into the regular region for all of the fie
strengths we will consider. All spectra were calculated us
128 cycles of the field after the end of the initial turn-o
period. Examples of spectra are shown in Fig. 5. Note t
since parity is a good quantum number for this system th
is no radiation at even harmonics of the driving field.

IV. HARMONIC GENERATION IN THE SQUARE WELL

We study harmonic generation in the quantum system
two field strengths. At each field strength we calculate
radiation spectrum, and Floquet composition at the end
the turn-on, for several initial states. In each case the sp
trum is essentially determined by which Floquet states

FIG. 5. Spectra for the driven square well ate5320. These
three spectra are typical for initial conditions starting in the th
regions of classical phase space:~a! regular,~b! resonance, and~c!
chaotic. The cutoffs for~b! and ~c! are determined by the range o
energies a classical particle in each region can sample.
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excited. For a general discussion on the radiation spect
of a superposition of Floquet states see Appendix B.

A. Strong field

The classical phase space for field strengthe5320 is cha-
otic for actions less than about 25. However, in the middle
this chaotic sea there is a prominent resonance from 12 t
in action and about21 to 1 in angle. AboveJ525 the phase
space is regular.

We compute the radiation spectrum of the quantum s
tem for three different initial conditionsn53, n516, and
n535. This allows us to study the quantum behavior
states that sit in the chaotic, resonance, and regular regio
the classical phase space. For this field strength we u
12-cycle turn-on. The radiation spectrum for each initial co
dition is shown in Fig. 5.

For initial staten535 we see that there is no high ha
monic generation. The radiation spectrum is typical of w
we might find using perturbation theory at weak fie
strengths. There is no significant harmonic radiation. Af
computing the Floquet eigenstates for this field strength
find that only one Floquet state was excited for this init
condition. The Husimi distribution of that Floquet state
shown in Fig. 6~a!. ~Note that this and all Husimi distribu
tions for this system should go to zero atu50 since this
corresponds tox521. Because of the smoothing involve
in creating the Husimi distribution there appears to be n
zero probability atu50 even though thewave functiongoes
to zero there.! It is clear that the Husimi distribution closel
follows the invariant tori that appear in the regular part of t
classical phase space. We will call such a state a ‘‘regul
Floquet state. These states are typically excited for ini
conditions that begin in the regular part of the classical ph
space. Since these states produce no HHG, this region
be of little interest to us here.

FIG. 6. Husimi plots of Floquet states for the driven square w
at e5320. Each state can be associated with a particular regio
the classical phase space:~a! regular,~b!–~d! resonance, and~e! and
~f! chaotic.
m

f
22

s-

r
of
a

-

t

r
e
l

-

’’
l

se
ill

For initial staten516 the radiation spectrum@Fig. 5~b!# is
quite different. There does appear to be a plateau in the s
trum running out to about the 11th harmonic. However,
harmonic peaks do not show up clearly. There are a num
of additional peaks~shifted harmonics! that make the spec
trum very messy. The Floquet analysis reveals that abou
Floquet states are excited above the level of 0.1%. This le
to shifted harmonics because the system can radiate at
quenciesnv01(Va2Vb), whereVa and Vb are quasien-
ergies associated with the excited Floquet states~Appendix
B!. If n Floquet states are excited there will be (n21)!
possible values of (Va2Vb). For 13 states this mean
nearly 109 possible shifted peaks for each harmonic.
should be noted, however, that 80% of the probability lies
three Floquet states. The Husimi distributions for these F
quet states are shown in Figs. 6~b!–6~d!. These three state
are all localized within the primary resonance.

Now for initial staten53 we see from Fig. 5~c! that there
is strong harmonic generation. The cutoff in the spectr
appears to be at about the 19th harmonic. There are a
shifted peaks, but not so many as to obscure the harm
peaks. The Floquet analysis reveals that there are two
quet states that are significantly excited. We see that
Husimi distributions of these Floquet states, shown in Fi
6~e! and 6~f!, are concentrated in the chaotic region of t
classical phase space. One of these is localized nearJ50
~the bottom of the well!, while the other is localized near th
unstable fixed point atJ'15. This combination gives the
quantum system access to energies spanning the chaot
gion.

For the combination of Floquet states arising fromn53,
one would expect transitions to occur whose energy diff
ence is equal to the energy range of the chaotic reg
@DE5p2(252202)/451542# or less~see Appendix B!. So
the cutoff in the harmonic generation should occur
DE/v051542/80'19, which is exactly what we see in Fig
5~c!. For the resonance Floquet states arising fromn516 one
would expect the cutoff to be given by the energy range
the resonance divided byv0. We find DEres5p2(222

2122)/45839 and DEres /V5839/80'10.5 which again
fits the spectrum in Fig. 5~b!.

B. Very strong field

At a field strength ofe51600 the classical phase space
chaotic belowJ540, as seen in Fig. 4~c!. There is a small
resonance still present nearJ522, as well as some tiny sec
ondary resonances, but all of these structures are small c
pared to\ in the quantum system. We cannot expect the
structures to have an impact on the quantum dynamics of
system. AboveJ540 the phase space is regular.

We study this field strength using initial conditionsn
53 andn522. We omit the results forn.40 because they
are identical to the regular results fore5320 @see Figs. 5~a!
and 6~a!#. The turn-on for this field strength is 60 cycle
which gives the same adiabaticity as the 12-cycle turn-on
e5320.

Starting off inn53, we find the spectrum shown in Fig
7~a!. At low frequencies the radiation spectrum resemb
‘‘white noise.’’ This is because of the large number
shifted peaks that wash out the harmonics. The sys

ll
of



e
h
e

o

n
-
it
ic
a

ne

e

o-
tial

ted.

mall

. In-
uet
y

rties
hat
will
-
n-
will

ge
ith

be
nce
er-

-
tic

dic
ed
ec-
tes
.
large
urs
sings
ex-

rent
the

ed
ple

cal
in
a

ut-
aos

the

hat
nties
igh
and

e
u

ot

fi

PRE 58 1719HIGH HARMONIC GENERATION IN SYSTEMS WITH . . .
passes through many avoided crossings~see Sec. V! during
the turn-on, resulting in the excitation of many Floqu
states. There appears to be a cutoff at about the 50th
monic. We show the Husimi distributions of two of thes
Floquet states in Figs. 8~a! and 8~b!. While the state shown
in Fig. 8~a! appears to be concentrated near the location
the small resonance~although certainly not inside it!, the
state in Fig. 8~b! is spread throughout the chaotic regio
This is somewhat different from the localized ‘‘chaotic’’ Flo
quet states ate5320. However, at this higher field strength
is typical for the chaotic Floquet states to fill the chaot
region. This delocalization occurs for Floquet states th
have passed through many avoided crossings~see Sec. V!.
Again we see that the size of the chaotic region determi
the cutoff as DE5p2(40220)/453948 and DE/v0
53948/80'49, which agree well with what we see in th
spectrum.

FIG. 7. Spectra for the driven square well ate51600. Although
~b! starts off in the resonance region, the resonance at this fi
strength is too small to influence the quantum dynamics. The c
offs for both spectra are given by the energy range of the cha
region.

FIG. 8. Husimi plots for driven square well Floquet states ate
51600. At this high field strength the Floquet states broaden to
the region of chaos.
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At n522 we are close to the energy of the small res
nance. However, we see that the spectrum for this ini
condition @Fig. 7~b!# looks very similar to the one forn53.
Again we find that there are many Floquet states popula
Husimi plots for two of these are shown in Figs. 8~c! and
8~d!. It is clear that these states arenot concentrated inside
the small resonance. This is because the resonance is s
compared to the size of\ in our calculations. The quantum
system effectively ignores the presence of the resonance
stead, the system populates delocalized chaotic Floq
states, as forn53. Again, the cutoff matches the energ
range of the chaotic region.

C. General properties

From the above analysis we derive some basic prope
of the radiation spectrum for this system. First, states t
start out in a regular region of the classical phase space
remain localized in this region. They will typically only ex
cite a single Floquet state whose Husimi distribution is co
centrated around a classical invariant torus. Such a state
produce no HHG.

A state initially inside a large~relative to\) resonance
will typically excite numerous Floquet states. This lar
number of Floquet states leads to a noisy spectrum w
many shifted peaks. However, most of the probability will
in Floquet states that are localized in or near the resona
region. This leads to a cutoff in the spectrum that is det
mined by the width~in energy! of the resonance.

An initial condition in the chaotic region will excite cha
otic Floquet states. At lower field strengths these chao
states will be localized near a particular unstable perio
orbit of the classical system. Only a few of these localiz
states will be excited, which leads to a clean harmonic sp
trum. At very high field strengths the chaotic Floquet sta
will have Husimi distributions that fill the chaotic region
These delocalized states have become associated with a
set of periodic orbits of the classical system. This occ
when the system has passed through many avoided cros
during the turn-on. These avoided crossings lead to the
citation of a large number of Floquet states and an incohe
radiation spectrum. In either case the cutoff is given by
energy range of the chaos, which can be quite large.

In all of these cases the cutoff in the HHG is determin
by the range of energies that the classical particle can sam
during its trajectory. This result is in agreement with@10#. It
is also similar to other cutoff laws~like those invoking the
ponderomotive potential or the ac Stark shift! because the
cutoff is just given by the maximum energy that the classi
particle can gain from the field. For a state that is initially
a chaotic region we can predict the cutoff by examining
strobe plot of the classical dynamics. Table I shows the c
offs seen in the spectra and the energy range of the ch
seen in the strobe plots. The observed cutoffs follow
strobe plot predictions very closely.

Note that the table includes data from field strengths t
are not discussed elsewhere in this paper. The uncertai
in the cutoff values read from the spectra are worse for h
field strengths because these spectra tend to be noisy
difficult to read.
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V. AVOIDED CROSSINGS

It seems apparent from the above analysis that if
wishes to get HHG, one must excite chaotic Floquet sta
To get sharp peaks at the harmonics~i.e., few shifted har-
monics!, one should excite as few Floquet states as poss
@19,20#. Ideally one would like to excite a single delocalize
Floquet state, but it is nearly impossible to excite only o
such state. Another alternative is to excite a superpositio
two states that sit at high and low energies, respectiv
Avoided crossings in the Floquet spectrum provide the
portunity for transitions between Floquet states@25# and
hence a method for engineering a particular combination
Floquet states.

In Fig. 9 we plot the quasienergies of our system for fie
strengths of 0–400. Up to field strengths of aboute5200
there are few avoided crossings~where two curves approach

TABLE I. Observed harmonic cutoffs and predictions based
classical strobe plots for several field strengthse. Uncertainties in
the observed cutoffs are large for very strong fields because t
spectra have many shifted peaks, making them difficult to read

e Observed Strobe

50 962 '11
150 1562 '15
320 1962 '19
960 3562 '37

1600 4964 '49
2560 7364 '74

FIG. 9. Plot of quasienergies as a function of field strength
the driven square well. Curves associated with resonance s
~i.e., V16 and V14) resemble eigencurves of the Mathieu equat
@27#. The avoided crossing discussed in the text is betweenV6 and
V10 at e'100.
e
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le
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but do not cross each other! to be seen. However, after thi
point the avoided crossings arise quickly. At even high
field strengths almost every curve undergoes a rapid suc
sion of many avoided crossings. The proliferation of avoid
crossings is associated with the spread of chaos in the c
sical system. One of the first avoided crossings occurs
field strength of e'100. This matches the critical field
strength for overlap of the two highest energy primary re
nances in this system@21,22#. This avoided crossing involve
states connected ton56 andn510 ~labeledV6 andV10 in
Fig. 9!. We note that these pairs are symmetric aboutn58
becauseJ58 is precisely where the classical resonanc
overlap at the critical field strength. This indicates a stro
connection between avoided crossings in the Floquet s
trum and overlap of nonlinear resonances in the class
phase space.

Figure 9 shows the quasienergies of the lowest 40 st
in our basis. Using a finite basis to calculate quasienerg
always introduces numerical error@26#, but for the field
strengths shown this error is extremely small. At higher fie
strengths one would need to use a larger basis to avoid
merical error. Essentially one can avoid numerical error
long as the basis extends well into the regular region of
phase space. Since our calculations use states up ton580 we
will not experience numerical error until the chaotic regi
comes nearJ580, which is not the case for any fiel
strengths we consider here. Note that there are also se
places in Fig. 9 where quasienergy curves actually cross e
other. These ‘‘apparent crossings’’ arise when the quasie
gies of two states are in resonance, but transitions betw
the states are forbidden@25#.

One interesting thing to note is that several of the cur
~i.e., V16, V14, . . . ! in Fig. 9 resemble curves of the cha
acteristic values of Mathieu’s equation@27#, which is the
Schrödinger equation for the quantum pendulum. Husi
plots of states with these quasienergies are localized in
the pendulumlike nonlinear resonance@similar to Fig. 6~b!#.
At very high field strengths, where the classical resona
has been destroyed, the quasienergy curves have
through many avoided crossings and no longer resemble
eigencurves of the Mathieu equation.

Avoided level crossings provide one of the two mech
nisms available for population transfer between Floq
states. The other mechanism is a nonadiabatic turn-on o
driving field. If the field is turned on rapidly, transitions be
tween Floquet states will be allowed because the Floq
states at one field strength will not be Floquet states at
other field strength. A rapidly varying field strength leads
rapid changes in the structure of the Floquet states and
to transitions between Floquet states. However, if the fiel
turned on adiabatically the system will remain in the sa
~continuously connected! Floquet state until it reaches a
avoided crossing. We will confine our investigation to pop
lation transfer that occurs at the avoided crossing betw
V6 andV10 at e'100.

To study this avoided crossing we start with the system
n56 and investigate the behavior of the system for fie
strengths below and above the avoided crossing. Ate565
the state is composed of 98.6%uV6& and 1.4%uV10& at the
end of its turn-on. Ate5125 we are mostly through th
avoided crossing and the state is composed of 72.5%uV10&

n

se

r
tes



e
h
c

i
e

ch
table
ed
ach

only
n
p, we
and

is
dif-
pi-
s to
ctra.
by
ses
so-
so-
or-
n,

gly
ex-
hest
sys-
f in-

or
on
eau
ed

ates.
el
the
ct
b-

in
for

ed
and

evel
can

cally
an

ings
po-
ld
uet
ng

ity
for

n

e

e

PRE 58 1721HIGH HARMONIC GENERATION IN SYSTEMS WITH . . .
and 27.5%uV6&. Spectra shown in Fig. 10 show an increas
in HHG as the system traverses the avoided crossing. T
indicates that population transfer ‘‘spreads’’ the wave fun
tion over a wider range of energies.

Since this avoided crossing is so broad we can eas
monitor the change in the Husimi distributions of the Floqu
states. Figure 11 shows the Husimi distributions foruV6& and
uV10& at various field strengths. Ate565 we see thatuV10&
sits at higher energy thanuV6&. At e5100 both states are in
approximately the same region of phase space. Ate5125
uV6& sits at higher energy thanuV10&. The Husimi distribu-

FIG. 10. Spectra for the driven square well with initial conditio
n56. The avoided crossing betweenV6 and V10 occurs between
these two field strengths. Note the increase in HHG after the syst
has passed through the avoided crossing.

FIG. 11. Husimi plots for~a!, ~c!, and~e! uV6& and~b!, ~d!, and
~f! uV10&. Note how the two states flow through each other as th
move through the avoided crossing.
is
-

ly
t

tions of the two Floquet states have ‘‘flowed’’ through ea
other. Since these Floquet states are associated with uns
periodic orbits of the classical system, it is clear that avoid
crossings occur when these periodic orbits move past e
other in phase space. Since periodic orbits can cross
after the destruction of Kolmogorov-Arnold-Moser tori i
classical phase space when nonlinear resonances overla
see that there is a close connection between chaos
avoided crossings.

Avoided crossings increase HHG in two ways. The first
by creating a superposition of Floquet states that occupy
ferent regions of phase space. This superposition will ty
cally be spread over a wide range of energies, which lead
the plateau structure that is observed in the radiation spe
The second way avoided crossings contribute to HHG is
creating delocalized Floquet states. After a state pas
through many avoided crossings it will lose the close as
ciation it had with a single periodic orbit and become as
ciated with a large set of periodic orbits. These periodic
bits will typically be spread throughout the chaotic regio
which leads to delocalization of the Floquet state.

VI. CONCLUSIONS AND DISCUSSION

We have studied the radiation spectrum of two stron
driven multilevel systems whose classical counterparts
hibit bounded chaos. The quantum systems show the hig
harmonic generation when the corresponding classical
tems become chaotic. This can be due to broadening o
dividual Floquet states across classically chaotic regions
the population of multiple Floquet states with support
chaotic regions. We observe the characteristic HHG plat
structure in either case. The harmonic cutoff is determin
by the energy range spanned by the populated Floquet st
In analogy with the harmonic cutoffs of the two-level mod
and tunnel ionization process, the cutoff is determined by
kinetic energy attainable from the driving field. We expe
this relation to be applicable to all multilevel models exhi
iting bounded chaos. Our results may also be applicable
atomic systems where bound-bound transitions account
most or all of the radiation. However, it should be point
out that in typical atomic systems chaos is not bounded
leads to ionization.

Chaos is also connected to the onset of the avoided l
crossings in the quasienergy spectrum. One method that
be used to excite Floquet states other than those adiabati
connected to the initial state is to run the system through
avoided crossing. Population transfer at avoided cross
can lead to quite significant changes in the Floquet com
sition of the wave function. This possibility seems to ho
the most promise for engineering a superposition of Floq
states that will radiate high-order harmonics of the drivi
field.
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APPENDIX A: THE HUSIMI DISTRIBUTION

The Husimi distribution is a quasiprobability distributio
function allowing direct comparison with classical pha
space distribution functions @28,29#. The quantum-
mechanical phase space is constructed by adopting the
herent state basis. A coherent state is a minimum uncerta
wave packet centered at a point (x0 ,p0) in the phase space
In the position and momentum representation they are g
as @30,31#

^xux0 ,p0&5S 1

s2p
D 1/4

3expS 2
~x2x0!2

2s2
1

ip0~x2x0!

\ D ~A1!

and

^pux0 ,p0&5S s2

p\2D 1/4

3expS 2
s2~p2p0!2

2\2
2

ix0~p2p0!

\ D ,

~A2!

wheres is a squeezing parameter that determines the w
of the Gaussian wave packet in each dimension. The Hu
distribution functionW(x0 ,p0) for an arbitrary wave func-
tion is just z^cux0 ,p0& z2, which is the probability that a par
ticle lies within an area\ centered at (x0 ,p0).

APPENDIX B: RADIATION SPECTRUM FOR
A SUPERPOSITION OF FLOQUET STATES

In this appendix we will examine the radiation spectru
of a superposition of two Floquet states that have suppor
disjoint sets of unperturbed energy eigenstates. Husimi p
of these states are shown in Fig. 12. We will write the
perposition as

uc~ t !&5aae2 iVatuVa~ t !&1abe2 iVatuVb~ t !&, ~B1!

whereuaau21uabu251 anduV(t)&5uV(t1T)&.
The time-dependent dipole expectation value for this

perposition is

FIG. 12. Husimi plot showing the two states in the superpo
tion. uV32& is primarily composed of then532 energy eigenstate
while uV50& is composed mainly ofn550.
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^c~ t !uxuc~ t !&5uaau2^Va~ t !uxuVa~ t !&

1uabu2^Vb~ t !uxuVb~ t !&

1aa* abei ~Va2Vb!t^Va~ t !uxuVb~ t !&

1ab* aaei ~Vb2Va!t^Vb~ t !uxuVa~ t !&.

~B2!

The first two terms correspond to the dipole value if t
system was in a single Floquet stateuVa(t)& or uVb(t)&. A
single Floquet state radiates only at the harmonics of
driving field. Since these terms correspond to transitio
within a single Floquet state, the harmonic production w
be determined by the range of unperturbed energy eig
states over which that Floquet state has support. If the F
quet state is spread over a wide range of energies, then t
terms can contribute HHG. If the Floquet state is confined
a narrow band of energies there will be no HHG. Figure
shows two Floquet states that lie in the regular region of
phase space for the driven square well ate550. Radiation
spectra for each of these states are shown in Figs. 13~a! and

i-

FIG. 13. Spectra for~a! and~b! individual Floquet states and~c!
a superposition of two states. The location of the cluster of peak
~c! is determined by the separation in energy of the Husimi dis
butions in Fig. 12.
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13~b!. It is clear that these states do not generate high
monics, as predicted.

The last two terms in Eq.~B2! are cross terms that corre
spond to transitions between the two Floquet states. Tra
tions between Floquet states give rise to radiation at frequ
ciesnv06(Va2Vb). If the two Floquet states have suppo
on widely separated sets of energy eigenstates, then t
terms can lead to HHG~at shifted harmonics!. An example
of this is shown in Fig. 13~c!, which shows the radiation
spectrum for a superposition of the two states shown in F
12. Note that one of these Floquet states has most o
,

s.

si-
r-

si-
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se
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its

support on then532 energy eigenstate and the other Floq
state is concentrated nearn550. We expect the superpos
tion to radiate at frequencies corresponding to the differe
in these energies. Forv0580 this is near the 45th harmonic
which is exactly where the cluster of peaks in Fig. 13~c!
appears. The width of this cluster is determined by the ra
of energies over which the two Floquet states have supp
Close inspection of the peaks in Fig. 13~c! shows that they
are all shifted by 0.477 from the odd harmonics. This agr
with our expectations since the difference in the quasien
gies of the two Floquet states~divided by v0) is (V32
2V50)/805(46.71228.526)/8050.477.
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