
The Solow Growth Model: An Excel-Based Primer 

 

Mankiw  says a goal of macroeconomic analysis is "to explain why our national income grows, 

and why some economies grow faster than others..." (186). He identifies "the factors of 

production—capital and labor—and the production technology as the sources of the economy's 

output and, thus, of its total income. Differences in income, then, must come from differences in 

capital, labor, and technology" (186). The model that forms the centerpiece of Mankiw's 

analysis, and the one developed below, is the Solow growth model. Mankiw says of this model, 

"The Solow growth model shows how saving, population growth, and technological progress 

affect the level of an economy's output and its growth over time" (186 - 187). The model also 

identifies some of the reasons that countries vary so widely in their standards of living. 

 

The second claim for the model, that the model identifies reasons for income differences across 

countries, is stated in a more reserved fashion than the first, that it explains growth over time. 

This is as it should be. Indeed, some analysts hold that the Solow model developed below should 

be applied only to modern industrial economies. Hansen and Prescott say:  

                                            

Until very recently, the literature on economic growth focused on explaining features of modern 

industrial economies while being inconsistent with the growth facts describing preindustrial 

economies. This includes both models based on exogenous technical progress…and more recent 

models with endogenous growth…. But sustained growth has existed for at most the past two 

centuries, while the millennia prior have been characterized by stagnation with no significant 

permanent growth in living standards.  

                           

 

With this caveat in mind, we turn to the development of the Solow growth model. This 

development follows Mankiw’s intermediate-level textbook, Macroeconomics, but it can be used 

as a stand alone module.  Each step of the development below is accompanied by a figure or a 

table from an Excel workbook. The workbook contains exercises that enable the manipulation of 

variables and show how changes impact other variables.  The ability to manipulate the variables 

and animate diagrams facilitates the understanding of the model.  For a similar development and 

for some other macroeconomic topics, see Barreto.  

 

The Production Function 
 

The most basic fact of economic life is scarcity. One way of stating this fact of life is via a 

production function like this one: 

Y = F(K, L). 

 

This function specifies that, for a given technology—defined by F(...), only so much output (Y) 

can be produced for given employment levels of the inputs capital (K) and labor (L).  To turn 



this observation into a model of economic growth requires some further assumptions. The 

assumptions regarding production that underlie the Solow growth models are these:  

• A single output is produced. Units of this output can be consumed or added to the capital 

stock. 

• A single type of capital and a 

single type of labor are employed 

in the production process. 

• The production function exhibits 

constant returns to scale. That is, 

changing the employment of both 

L and K by a proportional factor 

"z" would cause an equi-

proportional change in Y. The 

workbook upon which the 

illustrations below are based uses 

a particular constant-returns-to-

scale production function, the 

Cobb-Douglas function,  

Y = K
a
L

1-a
. 

(All graphs are from the workbook.  

Sheet names appear in the figures.) 
 

A useful characteristic of the constant-returns-to scale production function is that it can be 

"scaled" by the size of the labor force (assumed to equal, or at least be proportional to, the 

population). So the per-capita production function is of the form: 

y = Y/L = f(K/L) = f(k), 

 

where the lower-case letters indicate per-capita values. In the Cobb-Douglas case,  

Y/L = K
a
L

1-a
/L = K

a
L

-a
 = K

a
/L

a
. = k

a
.  

The figure above shows the relationship between y and k.  

 

Two features of the production function stand out: The relationship is positive (more capital per 

worker implies more output per worker), and the slope decreases as k increases (the marginal 

product of capital decreases). The marginal product of capital is defined as: 

MPK = ( f(k + ∆k) - f(k))/∆k,  

or equivalently 

MPK = f(k2) - f(k1)/(k2 - k1). 

In the graph above, k1 = 25 and k2 = 30, so ∆k = +5. In response, y increases from 2.627 units to 

2.774 units, so ∆y = 0.148 units. This implies that MPK, over the range considered here is 

0.148/5 = 0.0296, rounded to 0.030. For the Cobb-Douglas production function, 

MPL = ak
a-1

.  

Because a < 1, (1 - a) is positive, which implies that ak
a-1

 = a/k
1-a

 decreases as k increases. This 

fact is reflected in the ever-decreasing slope of the production function in the graph above. See 

notes on the marginal product. 



 

Output, Income, Consumption, Saving, and Investment 
 

An important lesson of the simple circular flow model is that an economy's output is 

simultaneously its income; i. e., the means to purchase that output. The next step in developing 

the Solow model is to trace the implications of 

this relationship to the allocation of output 

between consumption and investment. The 

model's consumption is a simple one: 

c = (1 - s)y, 

 

 

where c is per-capita consumption and s is the 

saving rate, the fraction of income not spent 

for consumption. This simple model is 

consistent with observed long-run behavior. 

Friedman cites earlier empirical work by 

Kuznets that provides evidence of this 

proportional relationship and develops some 

of its macroeconomic implications. 

 

The model assumes that savings are converted, via the capital market, into investment demand. 

Thus the level of investment demand is: 

i = sy. 

 

This completes the demand for goods and services. The equilibrium condition is that the two are 

equal: 

y = c + i . 

The figure above illustrates these relationships. At any specified value of k (capital per worker), 

the curve y = Y/L is the total demand for that output. The lower curve (Investment) is the 

investment demand. And the vertical distance between the two curves is the consumption level. 

 



Depreciation 
 

Depreciation is an unfortunate fact 

of life; capital wears out. The 

simple model of depreciation used 

here is that a constant percentage 

of the total capital stock wears out 

each year. The example to the right 

uses a relatively high rate, 20%, so 

that if the value of k is 10, then 2 

units of capital per worker must be 

replaced each year in order to 

maintain the capital stock at its 

beginning-of-the-year level. Any 

additional investment would result 

in an increased value of k. 

 

 

 

Steady State, Introduction 

 

Saving is proportional to output (= 

income), so it increases at a decreasing 

rate as k increases. For small values of k, 

saving exceeds depreciation. Since saving 

equals investment, saving exceeding 

depreciation implies that the capital stock 

is growing.  

 

At higher values of k, depreciation 

exceeds saving (which, to repeat, equals 

investment). This is so because output 

rises less than proportionately when k 

increases while depreciation rises 

proportionately. Therefore, at higher 

values of k, depreciation exceeds 

investment, so the capital stock cannot be 

maintained. 

 

The illustration at the right shows a case where the initial value of k (10) is below k's steady-state 

value (12.061). Accordingly, investment equals 0.798 units (40 percent of the income level, 

which is not shown). Meanwhile, depreciation is 0.07 times k or 0.700. Thus k increases by 

0.098 units during this period. 

 



Approaching the Steady State 
 

The graph above shows the adjustment to 

the steady-state value of k as a function of k 

itself. Any such adjustment, however, must 

occur through time. The table at the right 

provides a view of how the change occurs. 

The table takes as given the following: the 

production function (y = k
0.3

), the saving 

rate (saving = investment = 0.4y), the 

depreciation function (depreciation = 0.1k), 

and an initial value of k. 

 

 Given these values, during the base year, 

the following are true: y = 1.933, so saving 

= 0.773, which is less than the 0.900 units of depreciation, so the capital stock falls from its 

initial value of 9 to 8.873, the value observed at the beginning of year 1. This process continues, 

with the decrements to the capital stock decreasing as k approaches its steady-state value of 

7.246. During the10th year, the capital stock falls by 0.041 units, and during the 25th year by 

only 0.020 units—the per-worker capital stock is quite near its steady-state value. (To see what 

happens during intervening years, see the full table in the workbook.) 

 

The graph shows how this process 

plays out over the first 76 years, after 

which the change in k is less than 

0.001. The change in k begins at the 

relatively low level of -0.127 and 

quickly approaches zero. This 

reflects the facts that i is below 

depreciation (the two middle curves) 

but that the difference is rapidly 

vanishing. These ever-decreasing 

decrements to the capital stock imply 

that k is decreasing over the period 

(top curve, which refers to the left axis), but an an ever-decreasing rate. 

 



Comparing Steady States 
 

The analysis to this point has been 

positive, defining how a system 

works. In that system, the technology 

and depreciation are given by 

"nature"—some combination of 

technological facts of life, 

institutions, and historical accidents.  

 

The one variable that might be 

subject to control by policymakers is 

the saving rate. To some extent that 

rate is determined by people's 

preferences regarding future and 

present consumption, but not 

entirely. Policies matter. For 

example, Social Security is a pay-as-

you-go transfer program that looks 

much like a pension plan. 

Accordingly, its current design can reduce the saving rate. See the note.  

 

Likewise, policies like interest deductions for mortgage interest payments can affect both the 

level of investment and the sort of capital in which people invest. (The latter, of course, is not 

addressed in this simple one-good model. See the note.) 

 

If the values of s can be affected by policy and if different values of s lead to different outcomes, 

then we are faced with a normative issue, to determine a criterion for determining the "best" 

value of s, and accordingly the "best" steady-state outcome for k, i, and c. We explore a single 

normative criterion, the maximization of per-capita consumption. That such should be the 

criterion is not self-evident. For example, one might argue for more k, especially if part of k is 

armament and if one's body politic fears other political entities. 

 



The Golden Rule Steady State 
 

Taking the maximization of per-capita 

consumption as our goal, we examine 

the criterion that must be met if the best 

of the many possible steady-state values 

of k is to be identified. The graph at the 

right shows the value of k for which c is 

maximized. 

 

The value of c does not appear on the 

graph, but is the difference between y 

and sy (or, at steady-state, the difference 

between y and δy). The condition that 

must be met is that the slope of the y 

function must equal δ. 

• To see why, suppose that k is less 

than this value (which happens to 

be 4.80 in this case), which 

would happen if s < 0.3. Then the 

slope of the y function exceeds that of the depreciation function. so increasing k would 

cause y to increase by more than depreciation, leaving more for consumption 

• Alternatively, suppose that k > 4.8. Then y increases by less than depreciation, so what is 

left for consumption decreases. 

Examination of the graph and of the accompanying tables reveals the optimizing condition—the 

condition that must be met if the normative criterion is to be satisfied. That condition is that the 

marginal product of capital (the slope of the y function) must equal the depreciation rate δ. So, if 

policy is to result in maximum steady-state consumption, then a saving rate must be established 

such that: 

MPK = δ. 

As Mankiw points out (p. 212), public policy influences national saving in two ways: "The most 

direct way in which the government affects national saving is through public saving—the 

difference between what the government receives in tax revenue and what it spends. … The 

government also affects national saving by influencing private saving—the saving done by 

households and firms." 

 



Comparing Steady States: Steady-State Consumption as a Function of the Saving Rate 
 

The reasoning above implies that the 

steady-state equilibrium matters. One 

question is just how sensitive the outcome, 

in our case per-capita consumption, is to 

the steady state. The figure at the right 

suggests that if the underlying Cobb-

Douglas production is a reasonable first 

approximation to an economy's 

technology, then the exact value might not 

be a critical concern. 

 

The optimal saving rate is s = 0.3, which 

results in per-capita consumption of c = 

1.660 (see the chart below the graph). If 

the saving rate falls to just over one-half 

this level, s = 0.185, the resulting steady-state per-capita consumption falls only to c =  1.571, a 

decrease of about 5 percent. Likewise, if the saving rate were s = 0.417, more than one-third 

above the optimal level, c falls only to 1.592, a decrease of about 4 percent.  

 

The table shows the Golden Rule steady-state values for 

all variables. For the current model, one without 

population change or technological change, the Golden 

rule outcome requires that the marginal product of 

capital equal the depreciation rate, as stated above. With 

the Cobb-Douglas production function, MPK = ak
a-1

. 

Solving for the Golden Rule value of k is 

straightforward: kGR = (δ/a)
1/(a-1)

. Given the model's 

parameters, this implies that the value is kGR = 

(0.04/0.3)
-1/0.7

 =  17.786. The rest of the values follow 

from this one as follows: 

• y = k
0.3

 = 17.786
0.3

 = 2.372, 

• δk = 0.04(17.786) = 0.711, 

• sy = δk from the nature of steady state, 

• s = (sy)/y = 0.711/2.372 =  0.300, 

• c = y - s(y) = 2.372 - 0.711 = 1.661 (difference 

from table value due to rounding errors), 

• MPK = 0.3(k
-0.7

) = 0.3/(17.786
0.7

) = 0.040. 

 



Approaching the Golden Rule Steady State 
 

Suppose that an economy has achieved 

its steady-state investment rate, but not 

the one prescribed by the Golden Rule. 

Then suppose that policy changes 

occur such that the new saving (= 

investment) rate results in movement 

to the Golden Rule levels of k, s, and 

c. How does this change play out 

through time? Here we address that 

case of an economy that has been 

saving too much, so that its capital 

stock is too large to generate the 

maximum flow of consumption. We 

leave the examination of the other case 

as an exercise. 

 

The figure at the right shows that, if 

the economy were at the Golden Rule 

steady-state equilibrium, its sustained 

consumption level would be 1.660. Because the capital stock is above the Golden Rule value, 

sustaining that capital stock eats into consumption, so the steady-state consumption level is only 

1.627 (value read from the spreadsheet), while output is 2.627. This implies that s = (2.627 - 

1.627)/2.627 =  0.381. The table above shows that the Golden Rule s is lower, 0.300.  

 

Reducing s to its Golden Rule value, starting in year 31, allows a jump in consumption in that 

year (from 1.627 to 1.839 (= 0.7 * 2.627). As the capital stock decreases (k's values are on the 

right axis), so do y and i (= s*y = depreciation, at steady state—values shown on the left axis).  

 

Consumers in each year after 30 have increased consumption, but the model shows a basis for 

inter-generational tension. The change for s > sGR  to s = sGR provides the greatest boon to those in 

the years immediately after the change. Accordingly, those who institute the policy change in 

year 30 are appropriating the "free lunch" that those in later years would have enjoyed had s 

remained at its historically high level of 0.381. The inter-generational tension is, perhaps, more 

pronounced when the initial s is less than sGR. Again, working through that case is left as an 

exercise. 



Population Change and the Steady State 
 

Until now, the population has been 

held at a constant level, so that k 

grows whenever K grows (k = K/L, 

where L is the amount of labor). If L 

is growing, however, a constant level 

of K would imply a decreasing level 

of k.  

 

In this regard, population growth is 

much like depreciation: both reduce 

k—depreciation via its effect on the 

numerator in K/L, and population 

growth via its effect on the 

denominator. Mankiw provides the 

reasoning behind the following 

equation: 

∆k = i - δk - nk 

or 

∆k = i - (δ + n)k. 

The term (δ + n)k is the amount by 

which k would decrease in a year's 

time if no investment were made. This equation is only approximately correct, but the 

approximation is quite close. See the note. The straight line in the graph shows the amount by 

which the per-worker capital stock would decrease if no investment were made. 

 

Investment is made, however: sy is invested each time period. Steady-state is attained when sy = 

(δ + n)k. In the example at the right, a positive population growth rate has been added to the 

model developed immediately above. When n = 0, a = 0.3 δ = 0.04, and s = 0.30, the resulting 

steady-state k was 17.786 units of capital per worker. When the population is growing at 2.5 

percent per year, however, the same saving function, production function, and depreciation ratio 

result in a steady-state k of just 8.889 units of capital per unit of labor. Accordingly, per-capita 

output is 1.926 units, down from 2.372 when n = 0. 

 



Population Change II 
 

The graph at the right recreates the 

one above, with two exceptions. First, 

the depreciation-only (n = 0) case is 

included for comparison. Also, the 

population growth rate is a bit higher, 

3% rather than 2.5%. The result of 

this increase is that the steady-state k 

falls from 8.889 to 7.996. Per-capita 

output and consumption fall as a 

result of the decreased k. 

 

Is this particular steady-state outcome 

the "Golden Rule" outcome, the one 

that maximizes sustained per-capita 

consumption? As we shall see, yes. 

 

That outcome requires that  

MPK = δ + n. See note. Given the 

production function employed here, 

the table below reports the Golden 

Rule values when the population 

growth rate is 2.5 percent per year. 

 
Golden Rule values when  

population grows at 2.5% per year 

n      = 0.025 

kGR  = 8.889 

yGR  = 1.926 

cGR  = 1.348 

iGR  = 0.578 

s     = 0.300 

 

For the Cobb-Douglas production function, the value of s that corresponds to Golden Rule 

consumption is still the the exponent of k in the production function y = k
a
.  

 

The analysis above treats n as exogenous. Both n and s, however, might be sensitive to policy 

actions. Now policymakers have two potential tools for affecting the steady-state level of c. They 

can implement policies to change s, or they can implement policies to affect n. Many modern 

industrial countries are actively pursuing pro-natalist policies (for reasons unrelated to 

maximization of c), and some developing countries have implemented policies designed to 

reduce n, the most notorious being that of China. See Eberstadt. 

 

 

 



Technological Change and the Steady State 
 

The Solow growth model treats 

technology as if more workers were 

being added. That is, the effective labor 

force now becomes L times E, where E 

is a measure of productivity. With this 

new source of change, the capital per 

effective unit of labor, the new capital-

per-unit-of-labor variable becomes 

k = K/(L x E). 

 

Now, absent investment, k changes over 

time for three separate reasons: 

depreciation of the capital stock, 

population growth, and productivity 

growth.  

 

With this new source of change in k, the change in k becomes the following: 

∆k =  i - (δ + n + g)k, 

where the first two terms inside the parentheses are as developed earlier, and g is the annual rate 

at which labor productivity changes. See the note for the derivation of the term (δ + n + g)k. 

 

To see why per-capita consumption grows at the rate g, consider the graph at the right. Steady-

state equilibrium now requires that both the amount of capital and the amount of investment per 

efficiency unit of labor be constant. By the same token y, the output per efficiency unit of labor 

must be constant. Output must, therefore, grow at a rate (n + g). The number of workers grows at 

a rate of n, so the difference, g, is the annual rate of increase of per-worker output. Since 

consumption grows exactly in proportion with output, consumption per worker also grows at a 

rate equal to g. 

 

The analysis above treats g as exogenous. Both n and s, however, might be sensitive to policy 

actions. Now policymakers have three potential tools for affecting the steady-state level of c. 

They can implement policies to change s, they can implement policies to affect n, and they can 

implement policies to affect g. Such policies include those related to copyright and patents, as 

well as tax breaks for research and development or subsidies for basic research.. 

 



Technological Change II 

The graph at the right shows some of the 

same information as above, but from a 

different perspective. The worksheet 

from which this graph is copied focuses 

on the implications of s, n, and g for per-

capita output and consumption. 

 

The graph at the right is based on the 

assumption that the economy is on its 

Golden Rule steady-state path. The 

following exercise is instructive: Set the 

saving rate very low (what happens if s 

= 0?) and raise it toward the Golden 

Rule value and then above that value. 

Observe that, as s increases so does the 

Y/L trend  for all values of s. In contrast, 

however, the C/L trend shifts upward only until s = a (the Golden Rule value) and then shifts 

downward, with the ever-increasing difference between Y/L and C/L being the depreciation of 

the ever-larger capital stock. 

 

This worksheet is normalized so that L = 1 and Y = 1 

in the first year. Thus, the initial value of E is 

determined in a way that makes this normalization 

"work." As a result, the sheet does not not directly 

show the negative impact of population growth on per-capita consumption, but the negative 

effect can be can be deduced. The two inserts at the 

right show part of the table that gives rise to the graph 

above. In one case, the population growth rate is n = 

1.5% and in the other it is n = 2.5%. In both cases, the 

growth of per-capita consumption is the same--it 

grows at a rate equal to g, the rate of technological change. What differs, however, is the initial 

level of efficiency necessary to sustain these identical paths. When the population is growing at 

1.5 percent per year (L = 1, 1.015, 1.046, ...), an initial efficiency index of 0.552 is sufficient to 

generate observed income stream. When population is growing at 2.5 percent per year (L = 1, 

1.025, 1.077,  ...) the necessary efficiency index is 0.582 in the initial period. This means that a 

given group of laborers with a given level of efficiency must have lower consumption if the 

population is growing faster. 

 

 

 



An Empirical Note 
 

While reservations about the adequacy of the simple Solow model for explaining differences in 

economic growth are warranted, the model's predictions are consistent with observed outcomes. 

The estimated equation below is based on a data set developed by Mankiw, Romer, and Weil. 

Based on cross-section data from 121 countries, the following estimates are derived: 

gdp_growth_rate = 2.246 - 1.344*OECD + 0.115*investment_rate. 

                                          (2.934)               (5.036) 

 

The coefficient of determination is R2 = 0.185. The dependent variable is the average annual 

growth rate between 1960 and 1985. OECD is a binary variable that equals 1 if the country is a 

member of the Organization for Economic Cooperation and Development; the point estimate 

indicates that the growth rates averaged about 1.3 percentage points less for these countries than 

for others. The growth rate increased by an estimated 0.115 percentage points per one-

percentage-point increase in the fraction of a country's income that was invested. The associated 

t-statistic is quite large, indicating strong evidence that investment affects output. While 

investment is an important part of the story, it is far from being the whole story: The R2 of 0.185 

indicates that either variables other than the two included above or random effects account for 

81.5 percent of the variation among growth rates. 

 



Notes 

The decreasing importance of land 
Hansen and Prescott argue that in a pre-industrial economy, the fact that land is a fixed factor has 

serious implications for the relevance of the Solow model, in which no factor is in fixed supply. 

They point out that the implication of land's being a fixed factor becomes increasingly 

unimportant as economies progress toward the industrial (and post-industrial) stage. Their Table 

2 (page 1209) shows this progression for the United States. 

 
 

TABLE 2—U.S. FARMLAND VALUE RELATIVE TO GNP 

Year         Percentage 

1870             88 

1900             78 

1929             37 

1950             20 

1990               9 

 

 
 

 

 

 

Deriving the marginal product function 

from the production function 
At any point on the production function 

the marginal product is the derivative of 

the function with respect to the 

independent variable. For the Cobb-

Douglas production function, y = k
a
, MPL 

= ak
a-1

. Defining the MPL in terms of per-

capita values might appear inappropriate. 

After all, MPL is typically defined as the 

change in total output per one-unit change 

in the variable input (capital here) given 

the employment level of the fixed input 

(labor here). Are the two definitions 

compatible? To see that they are return to 

the original production function: 

Y = K
a
L

1-a
. 

The marginal product of capital is  

MPK = aK
a-1

L
1-a

  

          = aK
a-1

/L
-(1-a)

  

          = aK
a-1

/L
a-1

  

          = (K/L)
a-1

  

          = k
a-1

.  



 

This graph shows how the MPL as derivative compares to MPL in terms of discrete changes. In 

this case, ∆k = 5. The true MPL for this size change is 0.030, the value derived in the text. The 

derivative is a short-hand way of defining the MPL for the entire function. At the initial value of 

k, the MPL is 0.032, which overstates the change when ∆k = 5 rather than an arbitrarily small 

value, but the overstatement is slight. 

 

 

Downloading the workbook 

• We recommend saving the workbook file to a disk and then opening it.  

• The workbook contains macros. Activating the macros requires that Excel's security level 

be set at medium or lower before the workbook is opened. The default is high, and will 

not allow the opening of macros. Under "Tools/ Macro.. / Security" set the security level 

to medium. To repeat: Failing to set the security level below its default level will cause 

Excel to load the workbook but to strip it of all macros. 

 

Social Security and savings 
Most observers see the potential of Social Security for reducing saving as a weakness. It was not 

always so. According to Feldstein (page 10), "Keynesian economists in the 1940s … praised the 

unfunded character of the new Social Security program for its ability to depress national saving 

and stimulate aggregate demand."  

 

Differing production functions 
One reason that the "aggregate production function" that represents an economy might differ 

from one economy to another is the degree to which funds are allocated to those investments 

with the highest rates of return. If capital markets were perfect and if property rights were 

perfectly defined and enforced, then a system of markets would ensure equal marginal rates of 

return for all investments. As noted above, however, subsidies might favor one type of 

investment (in residential real estate in this case) over others. Mankiw (227) points out that three 

major types of investment can be identified: infrastructure (roads, bridges, sewer systems, etc.), 

human capital, and investments in non-infrastructure physical capital. Significant barriers to 

equalizing rates of returns across these broad categories can be identified. Furthermore, 

equalization within the categories is unlikely. Such is even more so in many pre-industrial 

economies. DeSoto argues that an important reason for failure of many third-world countries to 

develop is insecure property rights. He observes that squatters build up a considerable stock of 

capital, in the form of housing, without any clear title. They cannot, however, use any equity in 

this housing to underwrite small businesses, no matter how high the rates of returns from such 

investments might be.    

 

 



We are examining the rate at which k would decrease if it were not replaced. Now, two factors 

lead to reduced k: depreciation of the capital stock and dispersion of the capital stock among 

increasingly more workers. Consider two adjoining periods, 0 and 1: 

K1 = K0(1 - δ)          (Depreciation) 

L1 = L0(1 + n)           (Population growth) 

so 

k1 = k0(1 - δ)/(1 + n) 

Some algebra shows that  

k0 - k1 = k0(δ + n)/(1 + n) 

Here is the algebra. 

k0 - k1 is the amount by which  the capital stock declines, absent offsetting investment. 

k0 = K0/L0 and k1 = K1/L1 = (K0/L0)(1 + δ)/(1 + n), so 

k0 - k1 = k0 - k0(1 - δ)/(1 + n) 

k0 - k1 = [k0(1 + n) - k0(1 - δ)]/(1 + n) 

k0 - k1 =  k0(δ + n)/(1 + n) 

 

This is the amount that the per-capita stock of capital decreases if no investment is made. This 

equation differs slightly from the equation in Mankiw and the equation used in the workbook. 

For simplicity, the denominator (1 + n) is ignored. Leaving out this term simplifies the 

exposition at the cost of introducing an error of 1/(1 + n). For reasonable values of n, this error is 

about 2 or 3 percent. 

 

To repeat, the simpler equation that very closely approximates the actual decrease in k in the 

absence of any investment is this: 

∆k = k(δ + n) 

 

To illustrate, suppose that k = 10 and that depreciation and population growth are as indicated 

above. For concreteness, suppose that K = 10,000 and L = 1000 in the base year. Then a year 

later, K = 10,000(0.96) = 9600 and L = 1000(1.025) = 1025. Therefore, in the next year k = 

9600/1025 =  9.366. Except for rounding, this values equals 10,000(1 - 0.04)/1.025, which is 

9365.854. The decrease in k from 10 to 9.366 implies that 10 - 9.366 or 0.634 units of output per 

worker must be set aside for maintenance of the per-worker capital stock, roughly 0.4 to 

maintain the necessary 10,000 units of capital and 0.234 to provide the 25 additional workers 

with as much capital as the initial 1000 workers had. 

 

The numbers shown are exact. Compare them to the results of the simpler equation: 10(0.04 + 

0.025) = 0.650. The discrepancy is (0.650 - 0.634)/0.634 or about 2.5 percent.          

 

Consumption, saving, and investment 
Consumption is c = y - i because i = s. For any steady-state to occur i =  (δ + n)k. Therefore, we 

seek the value of k that maximizes y - (δ + n)k. But y is f(k). To find the maximum value of c, 

find the k for which the slope of the y = f(k) function equals (δ + n). That is, find the k for which 

MPK = (δ + n).          

 

 

 



Factors changing the value of k 
When technology is taken into account k is defined as follows: k = K/(L * E). L changes at a rate 

of n, and E changes at a rate of g. The capital stock depreciates at a rate δ. Consider the 

implication for ∆k for two adjoining years. Year 1 values are as follows:  

L1 = L0(1 + n) and E1 = E0(1 + g). 

Accordingly k1 = K1/(L1 x E1) = {(K0 - δK0)/[L0(1 + n)E0(1 + g)]}= k0(1 - δ)/[(1 + n)(1 + g)]. 

Absent investment, k1 < k0 for three reasons: depreciation, increase in the population, and 

increase in the number of efficiency units of labor per worker. 

 

We now use this information to determine the exact relationship between k0 and the decrease in 

k, absent investment. 

k0  - k0(1 - δ)/[(1 + n)(1 + g)] =  

[k0(1 + n + g + ng)]  - k0(1 - δ)]/(1 + n + g + ng) = 

[k0(δ + n + g + ng)]/(1 + n + g + ng) 

 

This differs slightly from the approximation used in the text above, and used by Mankiw. There 

the decrease in k per time period, absent investment, is k(δ + n + g). To see how much the two 

differ, suppose that n = 2.5 percent and g = 2.0 percent, both fairly large values. Let δ = 4 

percent. Mankiw's approximation is that k falls by (0.04 + 0.02 + 0.025)k or by 0.085k. In fact, 

over a year's time, the exact decrease is  

[(0.04 + 0.02 + 0.025 + .0005)/(1.02*1.025)]k = 0.081779k, for an error of less than 4 

percent.               
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